WebLogic JMS Runtime Message Management in a Nutshell

A Technical Whitepaper

[DRAFT- UNDER REVIEW]
By

Kathiravan Sengodan

WebLogic Server Messaging Team
March 2009
41 Abstract

42 An Overview Of WebLogic Runtime Infrastructure

93 WebLogic Runtime Administration Tools

93.1 WebLogic Administration Console

103.2 WebLogic Scripting Tool (WLST)

103.2.1 Basic Concepts around using WLST

143.2.2 Creating a Simple JMS Configuration

164 JMS Runtime State Monitoring and Administration

184.1 Pause/Resume Using Console

194.2 MBean API for Pause/Resume

204.3 Pause/Resume Using WLST

214.4 Caveats and Best Practices

215 JMS Runtime Statistics Gathering

225.1 JMS Runtime Statistics using Console

245.2 MBean APIs for Runtime Statistics

245.2.1 Top level JMS Runtime Statistics

255.2.2 JMS Message statistics from JMSDestinationRuntimeMBean

265.3 JMS Runtime Statistics using WLST

265.3.1 Top Level JMS Runtime Statistics Gathering

265.3.2 JMS Message Runtime Statistics Gathering

275.4 Caveats and Best Practices

286 Basic Concepts around Message Management

286.1 JMS Message Selectors

296.2 JMS Message Meta-Data

316.3 JMS Message Cursors

317 Message Browsing

317.1 Message Browsing using Console

337.2 MBean APIs for Message Browsing

387.3 Message Browsing using WLST

387.3.1 Browse/get all the messages from queue “MyQueue1”

397.3.2 Get all the messages from “MyQueue1” that matches the selector “JMSCorrelationID = ‘sent_to_MyQueue1’”

397.3.3 Get all the messages from “MyQueue1” that are in a given state

407.3.4 Navigating the cursor by one or more message at a time

407.3.5 Getting just one message from the queue using the JMSMessageID

407.3.6 Printing the Messages

427.4 Caveats and Best Practices

428 Message Manipulation

428.1 Move Messages

448.1.1 Moving Messages using Console

468.1.2 MBean APIs for Moving Messages

478.1.3 Moving Messages using WLST

488.1.4 Caveats and Best Practices

498.2 Delete Messages

498.2.1 Deleting Messages using Console

518.2.2 MBean APIs for Deleting Messages

528.2.3 Deleting Messages using WLST

528.2.4 Caveats and Best Practices

528.3 New Message Production Using Console

558.3.1 Caveats and Best Practices

559 Message Export and Import

559.1 Export Messages

559.1.1 Export Messages Programmatically

589.1.2 Export Messages using Console

609.2 Importing Messages

619.2.1 Importing Messages Using Console

639.2.2 MBean APIs for Import Messages

649.3 Importing Messages using WLST

659.3.1 Importing messages from MyQueue1 to MyQueue2

6510 Durable Subscription Management

6610.1 Managing Durable Subscribers using Console

7010.2 MBean APIs for Managing Durable Subscribers

7110.3 Durable Subscriber Management Using WLST

7110.3.1 Creating and navigating durable subscribers

7210.3.2 Getting the durable subscriber Runtime MBeans

7310.3.3 Deleting the durable subscriber

7410.3.4 Message Management of the durable subscription

7411 Transaction Management

7511.1 Transaction Management Using Console

7711.2 MBean APIs

8011.3 Transaction Management Using WLST

8011.3.1 Getting all the active Transaction IDs

8011.3.2 Getting the Transaction status of a given Tx ID

8111.3.3 Getting the messages associated with Pending Transaction

8211.3.4 Managing the messages associated with any given Transaction

8311.3.5 Forcing the transaction outcome to impact the message state

8312 Conclusion

8413 Errata

8413.1 OOM (Out Of Memory) caveat

8413.2 UOO (Unit Of Order) caveat

8413.3 Pause/Resume caveat

8514 Appendix A - References

1 Abstract
WebLogic JMS Runtime Administration, commonly known as “Message Management,” consists of following groups of activities: Monitoring and managing the runtime state of various JMS entities, Collecting Runtime Statistics of the JMS subsystem, Message Browsing, Message Manipulation, Message Import/Export, Durable Subscription Management, and Transaction Management. To support each of these activities WebLogic Server offers various features and capabilities that includes a set of programming APIs (exposed via JMX Runtime MBeans) and related Tools (Administration Console and command-line utilities) that you can use to manage the WebLogic JMS runtime environment. The purpose of this document is to provide an overview of the JMS runtime infrastructure and related Tools, introduce basic concepts around JMS runtime Administration, JMS Message Management and provide detailed information about how to use various tools to perform the message management operations in WebLogic Server. Both programming snippets/scripts for command-line utilities and Console screenshots would be provided throughout this document as needed to demonstrate various message management scenarios and capabilities of WebLogic Server. Hence this document can serve as a reference guide for using command-line utilities as well as Administration Console for WebLogic JMS message management.
2 An Overview Of WebLogic Runtime Infrastructure
To better understand the JMS Runtime Administration, which is one aspect of the WebLogic Server Administration, it is important to understand some of the general concepts around WebLogic Server OAM (Operation, Administration and Management) infrastructure and its building blocks.
The foundation of the WebLogic Server OAM infrastructure is built upon Java Management Extensions (JMX)
 technology, which provides standards based API and tools for building highly distributed, modular and dynamic management framework. The implementation of this technology helps capture and organize various configuration and runtime information in the form of JMX Management Bean APIs, or MBeans for short. Once created, these MBeans can be exposed and accessed via various administration tools including traditional command-line utilities, standalone GUI based application or Web based Administration Console. For more information on JMX technology please see http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

In WebLogic Server, both configuration and runtime information of server’s artifacts are managed and monitored by accessing corresponding WebLogic JMX MBean APIs
. For example, the configuration information of a WebLogic Server instance is managed using “weblogic.management.configuration.ServerMBean” API and its runtime state is monitored using “weblogic.management.runtime.ServerRuntimeMBean” API. Similarly, the configuration information of a JMSServer is managed using “weblogic.management.configuration.JMSServerMBean” and its runtime state is monitored using “weblogic.management.runtime.JMSServerRuntimeMBean” API. Note that all the configuration MBean APIs belong to “weblogic.management.configuration” package and all the runtime MBean APIs belong to “weblogic.management.runtime” package of the server.

The WebLogic Server OAM infrastructure organizes these MBean APIs such that, the organization would exactly reflect the hierarchical tree representation of a WebLogic Domain. And hence, the root MBean for the configuration hierarchy tree is called “weblogic.management.configuration.DomainMBean” and the runtime hierarchy tree is called “weblogic.management.runtime.DomainRuntimeMBean”. So, to access any of the MBeans (of type configuration or runtime), you have to first get access to the Domain MBean of the tree type and navigate the MBean hierarchy until you reach the MBean that is of interest. Note that there may not be one-to-one correspondence between all the configuration MBeans and runtime MBeans, Certain Runtime MBeans may not have the configuration MBean equivalent and vice versa. In WebLogic, these MBean trees are also designed to have certain access control mechanism to either allow or disallow the access of MBean nodes of the tree. And hence the WebLogic MBean trees can be compared and treated analogous to a typical file system trees of an operating system from the perspective navigation, manipulation and access control.

.
For the purpose of this paper, we limit the scope of the discussion to just JMS Runtime MBeans and its hierarchy is as shown below.

[image: image1]
Figure 1. JMS Runtime MBean Hierarchy

As you can see in the diagram, the root of the JMS Runtime MBean hierarchy begins at “JMSRuntimeMBean” that has both “ServerRuntimeMBean” and “DomainRuntimeMBean” as its ancestors. From this node in the tree, users can navigate to the rest of the JMS runtime MBeans such as JMSServerRuntimeMBean, JMSConnectionRuntimeMBean and so on.

Note that all of these MBeans are dynamically created and destroyed during runtime. Some of them are long lived in the Server as long as their configuration equivalent is actively deployed on the Server such as JMSServerRuntimeMBean and JMSDestinationRuntimeMBean. The lifecycle of these MBeans are managed by the WebLogic Server Administrator. Whereas some other MBeans such as JMSConnectionRuntimeMBean, JMSSessionRuntimeMBean and JMSConsumerRuntimeMBean are created to represent the runtime state of the JMS Clients that are currently connected to the Server. The lifecycle of these MBeans are determined by the JMS application itself and are destroyed as soon as the JMS Clients disconnect from the Server. All of these MBeans for the JMS runtime artifacts are based on simple data types and provide runtime statistics information as well as APIs for administering the runtime state of the JMS entity.
However, JMS message management involves more than just administering the runtime state of the configuration artifacts. It also involves the administration/browsing, management, and manipulation of the actual JMS messages themselves that are currently in the system. These messages are made up of complex data types as discussed below and can have various transient states (see Table 2) while they are being produced or consumed by applications. Also, messages can have vendor specific properties in addition to the standard javax.jms.Message properties (see Table 1) that you may be interested in for the management of the messages. To support this complex nature of JMS messages and their management, WebLogic JMS includes an OAM façade around destinations, messages, and consumers, and so forth, as extensions in WebLogic JMS
 which are linked into and exposed via appropriate JMS runtime MBeans.

The extensions are based on javax.management.openmbean.CompositeData
 that captures the meta-data about the JMS entities. The extensions consist of an “Info” object for each complex type that requires a CompositeData representation. The “Info” object typically encapsulates a JMS entity, such as a Destination or a Message, and supports conversion to and from a CompositeData representation that are accessed by various JMS runtime MBeans. Following is a list of info objects that are relevant to the APIs discussed in this document.
· weblogic.jms.extensions.JMSMessageInfo
· weblogic.jms.extensions.ConsumerInfo
· weblogic.jms.extensions.DestinationInfo
The link between these extensions and the JMS runtime MBeans are made available through a layer of special purpose Message Management MBean APIs called “Message Cursors” as shown below.

[image: image2]
Figure 2. JMS Runtime MBeans and Cursor Runtime MBean Hierarchy

For more details on WebLogic Server MBeans, see the WebLogic Server MBeanReference at http://e-docs.bea.com/wls/docs103/wlsmbeanref/core/index.html.
For more details on JMS Message management extension, please refer to http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/package-summary.html
3 WebLogic Runtime Administration Tools
WebLogic Server offers various OAM tools for runtime administration of the Server. The Web based Administration Console is very powerful and easy to use that enables the users to perform the remote management using a web browser. There are also a set of command-line utilities that can provide most of the administration capabilities and can be used both interactively as well as part of a scripting environment. Both weblogic.Admin and weblogic.WLST (WebLogic Scripting Tool)
 are widely known command-line utilities for administering the WebLogic Server. In addition to these, JMS subsystem also provides a special purpose command-line utility called weblogic.store.Admin that can be used to manage the file based persistent store. All of these tools are built on-top of the WebLogic JMX API infrastructure as described earlier. In addition to these readily available administration tools, WebLogic Server offers programming APIs and Libraries to users for building their own custom management utilizes and Administration Console extensions.
For more details on how to build the custom management utilities and extensions, please see
http://e-docs.bea.com/wls/docs103/custom_mgmt.html
For more details on WebLogic system administration and tools, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin.html
For more details on WebLogic Store Administration using weblogic.store.Admin utility and WLST, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_wls/store.html
For the purpose of this paper, only the Administration Console and weblogic.WLST are discussed from the Runtime Administration perspective and are used to demonstrate the example scenarios.

3.1 WebLogic Administration Console
WebLogic Administration Console comes packaged with the Server and can be accessed via a web browser. After starting the WebLogic server, users can point their browser to the Server’s URL (e.g. http://host:port/console, which will start the console’s Login page. After successfully logging in, the Console will display the WebLogic domain as its “Home” that has links to all the JMS related management pages as shown below.

[image: image3.jpg]ORACLE" Weblogic Servere Administration Console

View changes and restarts.

Configuration editing is enabled.
Future changes will automatically be
activated as you modfy, add or
delete ftems in this domain,

Search the configuration
Use the Change Center
Record WLST Scripts

Change Console preferences

~— Information and Resources

Helpful Tools
> Configure applications

> Recent Task Status

> Setyour console preferences

General Information
> Common Administration Task Descriptions
> Readthe documentation

> Aska question on Oracle eSupport

> Oracle Guardian Overview

~— Domain Configurations

Domain
8 Domain

Environment
Senvers

Glusters

Virual Hosts

Migratable Targets

Machines

Work Managers

Startup And Shutdown Classes

Serices

 Hessaging
Juis Senvers

Store-and-Forward Agents
IS Modules
Path Senices

Bridges

® JpBC
> Data Sources

> Multi Data Sources
> Data Source Factories

8 Persistent Stores

Interoperabiity
8 WTC Servers
8 Jolt Connection Pools

Diagnostics
Log Files
Diagnostic Modules
Diagnostic images
Atchives

Context

NP

Console Screenshot 1. Home page of WebLogic Administration Console

For details on how to use Console for various JMS runtime administration tasks, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/pagehelp/Summarysummaryservicesjmssummarytitle.html.
3.2 WebLogic Scripting Tool (WLST)
The WebLogic Scripting Tool (WLST) is a command-line scripting environment that can be used for both configuration management and runtime administration of the Server. It is based on the Java scripting environment called “jython”
. So to use the WLST, you need to follow the jython language syntax while entering the commands. In addition to supporting jython’s programming language constructs, WLST offers a set of WebLogic Server specific command verbs and syntax.
3.2.1 Basic Concepts around using WLST

As discussed earlier, WebLogic Server specific WLST commands are designed work by navigating and manipulating the JMX MBean tree, which is analogous to navigating and manipulating a typical file system tree environment. And hence WLST command verbs such as ls(), cd() and pwd() are designed to work on the MBean tree in a similar fashion to the file system tree.
WLST can be used either in “online” mode, by connecting to the running Server or in “offline” mode without connecting the running Server. When used in “online” mode, it can be treated as a command-line equivalent of the Administration Console and enables the users to monitor and administer the runtime environment on a live WebLogic domain.
WLST also provides three different invocation techniques of command-line operation:

· Interactive – where the users enter the commands interactively at the WLST prompt
· Script – the commands are supplied in batches in the form of a script file (with .py extension)

· Embedded – Where the WLST can be embedded into user’s java code

For the JMS runtime management, WLST must be used in “online” mode and can use any of the invocation techniques listed above.
The following steps needs to be followed to use WLST in “online” mode.

1. Setting up the environment – After installing the WebLogic Server software, WebLogic Server classes need to be added to the CLASSPATH environment variable and WL_HOME\server\bin to the PATH environment variable. Both of these can be set by invoking WL_HOME\server\bin\setWLSEnv script. On Windows, a shortcut on the Start menu sets the environment variables and invokes WLST (Oracle WebLogic[image: image4.png]

WebLogic Server 10gR3[image: image5.png]

Tools[image: image6.png]

WebLogic Scripting Tool).

2. Invoking WLST for Runtime Administration – The command-line syntax for starting the WLST is shown below:

java
 [-Dweblogic.security.SSL.ignoreHostnameVerification=true
 -Dweblogic.security.TrustKeyStore=DemoTrust]
 weblogic.WLST
 [-loadProperties propertyFilename]
 [-skipWLSModuleScanning]
 [[-i] filePath.py]

The parameters that are specified inside the [] for both java and WLST command-line are optional, when not specified WLST exhibit the default behavior, which is the “offline” interactive mode and indicated by the prompt “wls:/offline>”. Once started in this mode, users can enter “connect” command to force the WLST to go into “online” interactive mode and proceed to perform more administration tasks. As you can see in the example below, the connect command takes three arguments, username, password and the provider URL of the Administration Server.
java weblogic.WLST

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline> connect('weblogic','weblogic','t3://localhost:7001')

Connecting to t3://localhost:7001 with userid weblogic ...

Successfully connected to Admin Server 'examplesServer' that belongs to domain 'wl_server'

Warning: An insecure protocol was used to connect to the

server. To ensure on-the-wire security, the SSL port or

Admin port should be used instead.

wls:/wl_server/serverConfig>
After successful connection to the Server, the WLST displays a log message showing the Server Name and the domain name it is connected to. Also note that there is Warning message displayed in the above example, since the connect command specified a non-secure protocol in the provider URL.
Note that in interactive mode, after successful connection to the Server, WLST’s prompt changes to “wls:/wl_server/serverConfig>” to indicate that the WLST has entered into configuration management mode by navigating to the “root” of the Server’s configuration MBean tree. By default, the WLST prompt reflects the current location in the MBean tree, which can easily become large and wrap around the screen. To eliminate this situation, WLST offers “prompt()” command, when entered will toggle the prompt between simple form (wls:/>) and expanded form (full path).
For Runtime Administration of the server, you need to navigate to the “root” of the Server’s runtime MBean tree as shown below.

wls:/wl_server/serverConfig> serverRuntime()

Location changed to serverRuntime tree. This is a read-only tree with ServerRuntimeMBean as the root.

For more help, use help(serverRuntime)

wls:/wl_server/serverRuntime>

wls:/wl_server/serverRuntime> prompt()

wls:>

wls:> prompt()
wls:/wl_server/serverRuntime>

The following command would take the user to the root of the JMS runtime MBean tree (as described in Figure 1.)

wls:/wl_server/serverRuntime> cd ('JMSRuntime/examplesServer.jms')

wls:/wl_server/serverRuntime/JMSRuntime/examplesServer.jms>
All of the example WLST snippets shown throughout this document are based on the assumption that the user has successfully connected and navigated to the root of the JMSRuntimeMBean tree.
3. Key WLST commands
Before going into further details on how to use WLST, it is important to understand few key commands and concepts:

cmo – which is the abbreviation for “Current Management Object”; WLST internally keeps track of the current location as the user navigates the MBean tree and the corresponding Runtime MBean object is stored in a reserved variable called “cmo” that is available for system wide access. Hence any command executed at the WLST prompt without an object qualifier, applies to the “cmo” by default.
print – this is an overloaded command that would print out the value of the argument. The argument can be an object, an attribute of an object or any standard jython variable types or string literals.
pwd() – displays the full path of the current location in the MBean tree.
ls() – displays all the attribute values of the current management object (cmo)
cd() – changes the current location to the MBean node specified by the argument. This command is designed to work like in a file system environment by treating the MBean tree to a file system directory structure. Hence the argument “.” and “..” are supported with same meaning as file system (“.” – denoting current directory/node and “..” denoting parent directory/node) along with “/” as the path separator.
4. Getting the information about the Runtime MBean

Once navigated to the RuntimeMBean of interest, user can get more information about that MBean and its attributes. Users can either use “ls()” to dump all the attributes and values of the current MBean (cmo for short) or use the “getter” of a particular attribute of that MBean. Both the Runtime MBean object itself or the returned value of the MBean attribute can be stored in a local variable for later access as shown below:

wls:/wl_server/serverRuntime/JMSRuntime/examplesServer.jms> print cmo

[MBeanServerInvocationHandler]com.bea:Name=examplesServer,Type=ServerRuntime
wls:/wl_server/serverRuntime/JMSRuntime/examplesServer.jms> prompt()

wls:/> ls()
wls:/> pwd()

'serverRuntime:/JMSRuntime/examplesServer.jms'

wls:/>ls()
dr-- Connections

dr-- JMSServers

-r-- ConnectionsCurrentCount 10

-r-- ConnectionsHighCount 10

-r-- ConnectionsTotalCount 14

-r-- HealthState Component:null,State:HEALTH_OK,MBean:null,ReasonCode:[]

-r-- JMSServersCurrentCount 5

-r-- JMSServersHighCount 5

-r-- JMSServersTotalCount 5

-r-- Name examplesServer.jms

-r-- Type JMSRuntime

-r-x preDeregister Void :

wls:/> cc = cmo.getConnectionsCurrentCount()
wls:/> print cc

10

wls:/>
5. After completing the administration tasks, you can exit out of WLST as shown below.

wls:/> exit()

Exiting WebLogic Scripting Tool.

These basic steps outlined here need to be followed for every example WLST snippets shown throughout this document to avoid the repetition.

3.2.2 Creating a Simple JMS Configuration

Most of the example WLST scripts shown in this paper are based on a simple JMS configuration that is created using the following steps.

Step 1. Start the server

a. java weblogic.Server
Step 2. Invoke WLST to run the following snippet (configjms.py) to create the basic JMS configuration.

b. java weblogic.WLST configjms.py

Simple JMS Configuration creation using WLST

#

import the necessary packages

import sys

from java.lang import System

first step is to connect to the WebLogic Admin Server instance

connect('weblogic','weblogic','t3://localhost:7001')
Navigate to the root of the writable Configuration MBean tree
edit()
start the configuration edit session, to begin configuration modification
startEdit()

get the ServerMBean for the server named “myserver”

if it does not exist log an error and stop the execution
servermb=getMBean("Servers/myserver")

if servermb is None:

 print 'Server not found'

 stopExecution("cannot find the server myserver")

else:
 # create the JMSServer instance named “MyJMSServer1”
 jmsserver1mb = create('MyJMSServer1','JMSServer')
 # and target the JMSServer “MyJMSServer1” to “myserver”
 jmsserver1mb.addTarget(servermb)

 # create the JMSServer instance named “MyJMSServer2”
 jmsserver2mb = create('MyJMSServer2','JMSServer')

 # and target the JMSServer “MyJMSServer2” to “myserver”
 jmsserver2mb.addTarget(servermb)

 # create an instance of JMSSystemResourceMBean to represent a JMSModule
 jmsMySystemResource = create("MyJmsSystemResource","JMSSystemResource")
 # and target the JMSModule to “myserver”
 jmsMySystemResource.addTarget(servermb)

 # create a subdeployment for targeting resources on MyJMSServer1
 subDep1mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer1')

 subDep1mb.addTarget(jmsserver1mb)

 # create a subdeployment for targeting resources on MyJMSServer2
 subDep2mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer2')

 subDep2mb.addTarget(jmsserver2mb)

 # get the JMSBean to create the rest of the JMS resources
 theJMSResource = jmsMySystemResource.getJMSResource()

 # create Queue “MyQueue1” and target that to MyJMSServer1
 jmsqueue1 = theJMSResource.createQueue('MyQueue1')

 jmsqueue1.setJNDIName('wlst.mgmt.jms.MyQueue1')

 jmsqueue1.setSubDeploymentName('DeployToJMSServer1')

 # create Queue “MyQueue2” and target that to MyJMSServer2
 jmsqueue2 = theJMSResource.createQueue('MyQueue2')

 jmsqueue2.setJNDIName('wlst.mgmt.jms.MyQueue2')

 jmsqueue2.setSubDeploymentName('DeployToJMSServer2')

 # create Queue “MyTopic1” and target that to MyJMSServer1
 jmstopic1 = theJMSResource.createTopic('MyTopic1')

 jmstopic1.setJNDIName('wlst.mgmt.jms.MyTopic1')

 jmstopic1.setSubDeploymentName('DeployToJMSServer1')

 # create Queue “MyTopic2” and target that to MyJMSServer2
 jmstopic2 = theJMSResource.createTopic('MyTopic2')

 jmstopic2.setJNDIName('wlst.mgmt.jms.MyTopic2')

 jmstopic2.setSubDeploymentName('DeployToJMSServer2')

try:
 # try to save the configuration changes
 save()
 # activate the configuration changes and wait for its completion
 activate(block="true")

except:
 # on error log error message and the exception trace
 print "Error while trying to save and/or activate!!!"

 dumpStack()

WLST Snippet 1. – Creating a simple JMS configuration

Also, the example snippets assume that messages are already produced on the destinations/durable subscribers and are available in various states. (See Table 2 for more info).
For more details on WLST, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_scripting/using_WLST.html
4 JMS Runtime State Monitoring and Administration
During runtime, the JMS subsystem might run into various situations that might impact the smooth operation of the messaging service.

For example, the underlying persistent store that holds the persistent messages might run out of disk space or experience network issues (in case of JDBC Store) making it unavailable for service.

Second example could be where, the message consumer application might not be able to keep up with the incoming rate of the messages, leading to more message backlog in the server and more server resource use that will eventually lead to conditions like out of memory error situations.

Third example could be where, the system has received a “poison” message that cannot be handled by the consumer application or a “badly” behaved consumer application that causes the repeated redelivery of the same message leading to server “thrashing” and interruption of the message flow.

Yet another situation can be where, the UOO
 (Unit Of Order) messages are processed as part of a global transaction and the one of the participant was not able to successfully complete the transaction and hence causing those messages “stuck” in the system and stalling the processing of the entire UOO.

All of these situations need to be actively monitored and detected to avoid any interruption to the messaging service.

The situation described in the first example above, is the classic situation of the entire subsystem failure and can be automatically handled via “Service Migration” feature of the WebLogic Server.
For information on service migration, please see http://www.oracle.com/technology/products/weblogic/pdf/weblogic-automatic-service-migration-whitepaper.pdf and http://download.oracle.com/docs/cd/E12840_01/wls/docs103/cluster/service_migration.html
The situations described in the rest of the examples can be easily handled by monitoring and performing simple runtime state change operations and message manipulation operations via either Administration Console or WLST.

To handle the situation described in the second example above, you can the JMS runtime administration feature called “pause/resume messaging operations”. You can change the running state of the problematic destination to “production paused” in WLST by invoking the command “pauseProduction()” after navigating to the corresponding destination runtime MBean which will effectively prevent any new messages being produced to that destination thus allowing the consumers to catch up with the backlog. More on the “pause/resume” feature is discussed in the following sections.

The situation described in the third example can be handled by pausing both production and consumption on the problematic destination runtime and manually moving the “poison” message to an error destination for further investigation and resume both production and consumption to continue.

Finally, the scenario described in the last example can be handled by transaction management as explained later in this document in section 11.
4.1 Pause/Resume Using Console
Console screenshot of individual destination Pause/Resume:

[image: image7.jpg]AJNS destination identifies a queue (Point-To-Point) or a topic (Pub/Sub) that are targeted to a JHS server.

This page summarizes the active JUS destinations that have been created for this JUS module.

P Customize this table

Destinations
Showing 1101011 Previous | Next
O [Name & ProductionPaused ConsumptionPaused InsertionPaused
[| myJmsSystemResaurcellyQueuet false false false

Showing 110 10f 1 Previous | Next

Console Screenshot 2. Pause/Resume control on a destination

Detailed console steps for destination pause/resume, please see:

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueControl.html
Console screenshot of JMSServer Pause/Resume:

[image: image8.jpg]This page allows you to temporarily pause all run-time message production, insertion (in-fight messages), and consumption operations on all destinations targeted to this JUS server. These.
“message pausing” options allow you to assert administrative control of the JIS Subsystem behavior in the event of an external resource failure.

P Customize this table

s Server

Showing 1t 10f 1 Previous | Next

[| Name &

Pause

fetion Paused|

‘Consumption Paused

Insertion Paused

Resume

false

false

Showing 1t 10f 1 Previous | Next

Console Screenshot 3. Pause/Resume control on a JMSServer

For detailed console steps for controlling all the destinations on a JMSServer, please see:

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServerControl.html
4.2 MBean API for Pause/Resume
Both JMSServerRuntimeMBean and JMSDestinationRuntimeMBean APIs have the methods for pausing and resuming the message processing on any given destination during runtime. Message processing involves:

New Message Production – This process represents any new message production by new or existing producers on a destination.
In-flight Message Production – This process represents making any pending messages that are already in the system, available for on the destination. Pending messages include those that are initially produced with future delivery time or produced under a transaction that are not committed as well as those messages that are consumed by the consumers that are not yet acknowledged or committed.

Message Consumption – This process represents the actual delivery and consumption of the messages by the consumers.
Each of these messages processing operation has its corresponding pause and resume control APIs as described in the table below.
	API Signature
	Description

	public void pauseProduction() throws JMSException();
	Pauses the new message production operation on the destination

	boolean isProductionPaused();
	Returns true if the destination is currently paused for new message production operation, false otherwise

	public void pauseInsertion() throws JMSException;
	Pauses in-flight message production operation on the destination

	public boolean isInsertionPaused();
	Returns true if the destination is currently paused for in-flight message production operation, false otherwise

	public void pauseConsumption() throws JMSException;
	Pauses the consumption operation on the destination

	boolean isConsumptionPaused();
	Returns true if the destination is currently paused for message consumption operation, false otherwise

Note these operations can be performed at both JMSServer level or at the individual Destination level. When performed on the JMSServer, the operation will impact all the destinations that are hosted on that JMSServer.
For more information on the APIs, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSServerRuntimeMBean.html and
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSDestinationRuntimeBean.html
4.3 Pause/Resume Using WLST
navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

navigate to “MyQueue1” that we want to control the message processing
cd (‘Destinations/MyJmsSystemResource!MyQueue1’)
pause this destination for new message production
cmo.pauseProduction()
check the destination’s current new message production state

cmo.isProductionPaused()

resume the destinations for new message production state

cmo.resumeProduction()

pause this destination for in-flight message production

cmo.pauseInsertion()

check the destination’s current in-flight message production state

cmo.isInsertionPaused()

resume the destinations for in-flight message production state

cmo.resumeInsertion()

pause this destination for consumption of messages

cmo.pauseConsumption()

check the destination’s current message consumption state

cmo.isConsumptionPaused()

resume the destination for message consumption

cmo.resumeConsumption()

now to control all the destinations that are hosted on the
JMSServer ‘MyJMSServer’

first navigate the MyJMSServer1’s runtime MBean

cd (‘../..’)

Now pause the JMSServer for new message production

note that the “cmo” is now pointing to the JMSServer “MyJMSServer1”
cmo.pauseProduction()
To resume the production on all the destinations

cmo.resumeProduction()

similarly, controlling the in-flight message production and message consumption

can be controlled with appropriate APIs as shown for controlling destination
WLST Snippet 2. Pause/Resume message processing

4.4 Caveats and Best Practices
Note that pausing in-flight message production would also pause the new message production on the destination as well. On the other hand, both production operations are paused at the same time, resuming one will not resume the other.
Also, note that runtime state change using these APIs is not going to affect the start-up behavior configured on the JMSServer or Destination. In other words, when the Destination or JMSServer gets redeployed, it will start with appropriate message processing state as configured.
As JMSServer acts as a container for the destinations, some of the runtime administration operations on the JMSServer would also affect the destinations as well and pause/resume operation is one such example.
There may be cases where a group of destinations that are hosted on a single JMSServer need to be paused or resumed together for messaging operation, and can be easily and conveniently done by simply performing the operation on the hosting JMSServer once rather than repeating the same operation on every destination. This is common in scenarios where the administrator wants isolate a problematic destination among the group of destinations. To do so, the administrator can stop all the messaging operations on a given JMSServer first by calling the appropriate “pause” operation and resume the messaging operation gradually by calling “resume” on individual destination one at a time until the issues is detected.
For more details on pausing and resuming the message processing operations, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jms_admin/troubleshoot.html#wp1127322
5 JMS Runtime Statistics Gathering
As part of the JMS runtime administration, you may want to gather metrics about the system that maybe used to analysis. Careful analysis of the metrics would aid the administrator in many situations including but not limited to:

Problem identification and resolution – For example monitoring queue depth may indicate that the messaging rate of the system and would help identify slow running producers or consumers and/or stuck messages.

Capacity planning – queue depth and the messaging rate are key indicators for sizing the resources to handle the applications’ load, scalability and performance requirements of the system appropriately.
In WebLogic, top level JMS runtime statistics on any given Server instance can be obtained from the JMSRuntimeMBean of that Server that include both connection level (called frontend) and at JMSServer (called backend) level information.

The frontend statistics include how many active connections, sessions, producers and consumers are active in the system.

The backend statistics include how many JMSServers are active, how many destinations are active on each of the JMSServer and various message related metrics on those JMSServers and destinations.
Note that all of these statistics information is dynamic and only represents the information about that entity since that entity was last reset/booted/restarted. In other words, all of the runtime statistics will be reset to 0 or appropriate current values every time that entity is restarted. Restarting a server instance resets all the statistics information both the frontend and backend that exists on that server instance.
Current Count - Indicates that the current value of the specified attribute/entity since the last boot/restart
High Count – Indicates that highest value of the specified attribute/entity at any one time since the last boot/restart
Total Count – Indicates that the total value of the specified attribute/entity since the last boot/restart
The complete MBean hierarchy of the JMS runtime is described in section 2 and in Figure 1.
5.1 JMS Runtime Statistics using Console

The following screenshot shows the message statistics information on a given JMSServer. Note that this page displays the “aggregate” information of all the destinations on that JMSServer.

[image: image9.jpg]on Pool

Active Pooled Conne

Use this page to view runfime stafistics for all ofthe active JWS servers, active destinations, active iransactions, active connections, and session pools in the current domain.

Statistics(Filtered - More Columns Exist)

Showing 1to 1 of 1_Previous | Next

(7 [Namess |Brtes |Messages Nessages Messages | Messages Messages Threshold | Bytes Bytes Bytes. Bytes.
High | Current Pending High Received Time Current [Pending | Received | Threshold
[|maussenert [33s |2 5 i o 0 78 200 5310 0

‘Showing 1t 10f 1 Previous | Next

Console Screenshot 4. JMS Message Statistics information on a JMSServer

To get the message statistics of a destination using console, you can either navigate to the runtime monitoring page of the JMSServer that is hosting the destination and clicking on the “Active Destinations” tab (screenshot 6) or navigate to the specific JMS destination runtime MBean by navigating through the JMS module where the destination is defined/deployed (screenshot 7). Note that in the first approach, the table will list all the statistics information for all the destinations that are hosted on that JMSServer.

[image: image10.jpg][Fer==simmen st s Seves iy vsSever Wonitoring_]

Configuration | Logging

“This page allows you to view actve destinations targeted to this JUS server.

P Customize this table

Showing 110 30f3 Previous | Next

Messages - Consumers | Bytes Bytes Bytes Threshold.
O DestinationType o
MySSenert!
o MyJMSServer1.TemporaryQueue0 Q 0 Qusto o 0 o
[| mumsSystemResourcelilyaueuet 2 5 Queue 78 200 0
[| mumssystemResourcelhiyTopict o o Topic 0 0 0

Showing 110 30f3 Previous | Next

Console Screenshot 5. JMS Message Statistics information on a JMSServer displaying individual destinations

[image: image11.jpg]o vosuies smyimssysemrasource wyaueue |

| '] securty | Subdepk

AJNS destination identifies a queue (Point-To-Point) or a topic (Pub/Sub) that are targeted to a JHS server.

This page summarizes the active JWIS destinations that have been created for this JUS module.

P Customize this table

Destinations(Fitered - More Columns Exist)

[FErewiesegee| Showing 11010f 1 Previous | Next

T Messages Messages Bytes Bytes. Consumers Messages Threshold | Bytes Threshold
Current Pending Current Pending current Time Time

myJmsSystemResource!

Wl 2 5 78 200 0 0 0

Console Screenshot 6. JMS Message Statistics information on a destination

5.2 MBean APIs for Runtime Statistics
This section lists a couple of key MBean APIs for getting the JMS runtime statistics. For the rest of the Runtime MBean APIs, please look at Figure 1 and http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSRuntimeMBean.html
5.2.1 Top level JMS Runtime Statistics
	API Signature
	Description

	public long getConnectionsCurrentCount();
	Current number active of JMS connections to this WebLogic Server instance.

	Public long getConnectionsHighCount();
	The highest/peak number of JMS connections made to this WebLogic Server instance since the last reset.

	public long getConnectionsTotalCount();
	The total number of JMS connections made to this WebLogic Server instance since the last reset.

	public long getJMSServersCurrentCount();
	The current number of JMSServers that are deployed on this WebLogic Server instance.

	public long getJMSServersHighCount;
	The highest/peak number of JMSServers that were deployed on this WebLogic Server instance since this server was restarted.

	public long getJMSServerTotalCount();
	The total number of JMS servers that were deployed on this WebLogic Server instance since this server was started.

	JMSConnectionRuntimeMBean[] getConnections();
	Returns an array JMSConnectionRuntimeMBeans of the current active connections from this WebLogic Server instance.

	JMSServerRuntimeMBean[] getJMSServers()
	Returns an array JMSServerRuntimeMBeans of the currently deployed JMSServers on this WebLogic Server instance.

	HealthState getHealthState();
	Returns the health state of the JMS Service on this WebLogic Server instance.

5.2.2 JMS Message statistics from JMSDestinationRuntimeMBean

The following table shows the message related statistics from a destination runtime MBean. Note that the message statistics information can be obtained based on the count and/or the size (total bytes) of the messages that are in the system. In addition to the count and size, you can also obtain information about how long the given destination was in “threshold” condition.
For more information on “thresholds” can be found at: http://download.oracle.com/docs/cd/E12840_01/wls/docs103/perform/jmstuning.html#wp1121837
	API Signature
	Description

	public long getMessagesCurrentCount();
	The current number of messages on this destination. This does not include the pending messages.

	Public long getMessagesPendingCount();
	The number of pending messages exist on this destination. Pending messages are over and above the current number of messages. A pending message is one that has either been sent in a transaction and not committed, or that has been received and not committed or acknowledged.

	public long getMessagesHighCount();
	The peak number of messages on the destination since the last reset.

	public long getMessagesReceivedCount
	The number of messages produced on this destination since that reset.

	Long getMessagesThresholdTime();
	The amount of time this destination was in the messages threshold condition since the last reset.

	public long getBytesCurrentCount();
	The current number of bytes stored in the destination. This does not include the pending bytes.

	Public long getBytesPendingCount();
	The number of pending bytes stored on this destination. Pending bytes are over and above the current number of bytes. Pending bytes are the ones that have either been sent in a transaction and not committed, or that have been received and not committed or acknowledged.

	Public long getBytesHighCount();
	The peak number of bytes on the destination since the last reset.

	Public long getBytesReceivedCount
	The number of bytes produced on this destination since that reset.

	Long getBytesThresholdTime();
	The amount of time this destination was in the bytes threshold condition since the last reset.

5.3 JMS Runtime Statistics using WLST
5.3.1 Top Level JMS Runtime Statistics Gathering
wls:/wl_server/serverRuntime/JMSRuntime/examplesServer.jms> ls()

dr-- Connections

dr-- JMSServers

-r-- ConnectionsCurrentCount 10

-r-- ConnectionsHighCount 10

-r-- ConnectionsTotalCount 14

-r-- HealthState Component:null,State:HEALTH_OK,MBean:null,ReasonCode:[]

-r-- JMSServersCurrentCount 5

-r-- JMSServersHighCount 5

-r-- JMSServersTotalCount 5

-r-- Name examplesServer.jms

-r-- Type JMSRuntime

-r-x preDeregister Void :

wls:/wl_server/serverRuntime/JMSRuntime/examplesServer.jms>

WLST Snippet 3. Top Label JMS Statistics monitoring

5.3.2 JMS Message Runtime Statistics Gathering
The following snippet shows how to find out the “queue depth” of a given destination.
navigate to the runtime mbean for “MyQueue1”

cd ('JMSServers/MyJMSServer1/Destinations/myJmsSystemResource!MyQueue1')
get the messages current count value and store it in a var called “mcc”

mcc = cmo.getMessagesCurrentCount()
get the messages pending count value and store it in a var called “mpc”

mpc = cmo.getMessagesPendingCount()
Add both messages current count and messages pending count and store it in

local var called “queue_depth”

queue_depth = mcc + mpc
print out the value of the queue depth for the destination named “MyQueue1”
print queue_depth
WLS Snippet 4 – Calculating the queue depth of a destination using message statistics
The following snippet shows how to calculate the total number of messages on a given JMSServer.
first navigate to the Runtime MBean for the “MyJMSServer1”

cd ('JMSServers/MyJMSServer1')
get the messages current count value and store it in the local var “jsmcc”

jsmcc = cmo.getMessagesCurrentCount()
get the messages pending count value and store it in the local var “jsmpc”

jsmpc = cmo.getMessagesPendingCount()
add both messages current count and messages pending count values to find

out the total number of messages available on JMSServer “MyJMSServer1”

total_msgs = jsmcc + jsmpc
print out the value of the total number of messages
print total_msgs

WLS Snippet 5 – Calculating the total messages available on a given JMSServer

5.4 Caveats and Best Practices

Similar to the runtime state monitoring and administration, the message runtime statistics are available and can be obtained from both at JMSServer and Destination (or Durable Subscriber). The information obtained from the JMSServer represents the “aggregate” value from all the destinations that are hosted by that JMSServer. For example, the MessagesCurrentCount value from the JMSServer represents the aggregation of all MessagesCurrentCount value of individual destinations from that JMSServer.

To find the queue depth of a given Destination or a JMSServer, you need to can be calculated by adding both “MessagesCurrentCount” and “MessagesPendingCount” values.

In addition to the message statistics information, the JMS destination runtime also has the information about the consumer counts. So, to find out whether a given destination has active consumers or not, you need to navigate to the destination runtime MBean and use the appropriate getters or use the console page as shown in screenshot 7.

6 Basic Concepts around Message Management

As mentioned at the beginning of this paper, one of the JMS runtime administration activities is to monitor the runtime state of the various JMS entities and take appropriate actions to ensure the stable operation of the messaging backbone of the applications. Understanding some of the basic concepts best practices around message management such as creating and using “message selectors” and “message cursors” would help the users to effectively perform the JMS runtime administration.

6.1 JMS Message Selectors
One of the key concepts in message management is called “message selection” or “message filtering” that allows the consumers to receive only the messages that are of interested to that application. This is achieved by passing in a message selection criteria also called as “selector”, while creating the consumers.
The selector is a regular boolean expression consists of a string with syntax similar to where clause of an SQL select statement. Selector can include various attributes associated with the messages headers and properties. WebLogic JMS allows the users to create selector expression based on JMS message header fields and or property fields. In addition to the standard JMS message header fields, you can also use the WebLogic specific system properties such as JMS_BEA_UnitOfOrder, JMS_BEA_Size and JMS_BEA_State. See the Table 1 below for WebLogic specific JMS message properties.
Contents of the message body cannot be used as part of the filter expression except for XMLMessage type. For XML message types, WebLogic provides a special syntax called “JMS_BEA_SELECT” based on XPATH expression in addition to the standard SQL select syntax. The XML selector can be used to select messages based on the content of the XML message body.

Here are a few examples for the selectors:

· Get all the messages that are in the queue with priority great than 5

“JMSPriority > 5”

· Get all the messages that belong to the unit-of-order “BLUE”

“JMS_BEA_UnitOfOrder LIKE ‘BLUE’”

· Get all the messages that are bigger than 1k size

“JMS_BEA_Size > 1024”

· Get all the messages that are pending as part of a receive transaction

“JMS_BEA_State LIKE ‘receive transaction’”

For more details on JMS message filtering, see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jms/manage_apps.html#wp1186875
6.2 JMS Message Meta-Data
From a management perspective, the standard javax.jms.Message header attributes are not sufficient to select messages on a destination. Additional attributes such as a message’s size and its current state (see below), among other attributes, can be more useful for querying and sorting purposes.

The following table identifies the WLS-specific metadata properties that can be used for message selection or sorting in addition to the standard JMS Message header properties.

	Property Name
	Description
	Values

	JMS_BEA_UnitOfOrder
	The Unit Of Order Identifier.
	A valid client or system generated string representation of a UOO ID.

	JMS_BEA_Size
	The size of the message in bytes.
	A long value.

	JMS_BEA_State
	The current state of the message (see table below)
	String literal

	JMS_BEA_SequenceNumber
	The sequence number assigned to messages by the system upon arrival on the destination
	A long value.

	JMS_BEA_DeliveryTime
	Birth time of the message
	A long value.

	JMS_BEA_RedeliveryLimit
	The number of the redelivery attempts to be made before moving the message onto error destination (or drop it)
	A long value.

	JMSXDeliveryCount
	The number of times the message has been delivered to the client
	A long value.

Table 1. WebLogic specific Message properties

In addition to the WebLogic-specific header properties mentioned above, there are additional attributes about the message along with the actual messages that are captured in the weblogic.jms.extension.JMSMessageInfo extension. One message attribute holds information about the current state of the message, as shown in the table below:

	State
	Description
	Bitmask
	String literal to be used in message selector

	Visible
	The message is visible on the destination and may be consumed.
	1
	visible

	Send
	The message is pending because it is associated with an in progress send operation.
	2
	send

	Received
	The message is pending because it has been received by a consumer but not yet acknowledged.
	4
	receive

	Transaction
	The message is associated with a transactional “send” or “receive” operation that is in progress.
	8
	‘send transaction’ or ‘receive transaction’

	Ordered
	The message belongs to a Unit of Order.
	16
	ordered

	Delayed
	The message is pending because it has a scheduled delivery time or is otherwise delayed.
	32
	delayed

	Expired
	The message has expired and is no longer available for consumption.
	64
	expired

	Redelivery-count-exceeded
	The message has exceeded the redelivery count set for the destination and is no longer available for consumption.
	128
	redelivery-count-exceeded

	Paused
	The message is pending because of a destination pause operation
	256
	paused

	Sequenced
	The message that is part of a SAF sequence
	512
	sequenced

	Unit of work component
	The message is part of an Unit of work (UOW)
	1024
	unit-of-work-component

	Deleted
	The message marked for deletion
	1073741824
	deleted

Table 2. Message states

This concept is very useful in effectively managing a large number of messages in the system without using large amount of server resources.
For more details on message filtering, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jms/manage_apps.html#wp1186875
6.3 JMS Message Cursors
Another concept around message management is called “message cursors” that allows the users to create a snapshot of the destination in time and view those messages contents without physically removing them from the destination. The cursor offers APIs using which the users can to navigate the cursor both forwards and backwards get the message itself to inspect its contents.

7 Message Browsing
With the Message Browsing features, you can programmatically or administratively obtain a list of messages on a given destination that matches certain selection criteria for viewing its contents without really consuming them off of the destination. This feature is very useful in situations, where the Administrator would like to browse through the destination looking for particular message(s) to isolate problem causing messages. This feature is implemented using the messaging concepts described above.

Note that since the cursor is just a snapshot of a live destination in time, it can easily become “stale” if the messages are produced and consumed on a on that destination after the cursor is created. To prevent the browsing of outdated messages, you can “pause” the message production and consumption (see section 4. above) on the destination prior to creating the cursor.

7.1 Message Browsing using Console

Message browsing option is available via “Show Messages” option in the Console as part of the “monitoring” pages. Note that the “Show Messages” button would be “disabled” by default and you need to select one or more destination from the table to “enable” the “Show Messages” button as shown in the screenshot below:

[image: image12.jpg]Home >JM1S Nodules >myimsSystemResourcs >MyQuevel

AJS destination identifies 3 queue (Point-To-Point) or a topic (Pub/Sub) that are targeted o a JHS server.

This page summarizes the active JMIS destinations that have been created for this JUS module.

P Customize this table

Destinations(Fitered - More Columns Exist)

Showing 1t 10f 1 Previous | Next

= = Messages, Wessages Bytes Bytes Consumers Messages Threshold | Bytes Threshold
o Current Pending Current pending Current Time Time
mymsSystemResource!
l@ e 2 5 78 200 0 0 0

Showing 1t 10f1 Previous | Next

Console Screenshot 7. Message Browsing Step 1
Once enabled, clicking on the “Show Messages” button would display a table all the messages that are available on that destination as shown below. To display a filtered list of messages, you can enter a valid ‘selector” expression in the “Message Selector” text box and the click “Apply” button.

[image: image13.jpg]IS Modul

myJmsS stemResouroe MyQueue >Summary of JMS Messages

Summary of JMS Messages.

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages to another destination, export message contents in XHL format to another ile, import XML formatted message contents from another file or drain all the
messages from a destination

Click on a message to view ts contents.

Message Selector:]

P Customize this table

JNS MessagesFiltered - More Columns Exist)

Showing 1107 of 7 Previous | Next

O [ma Corrid Time Stamp. State String
[| 10:<106228.1234975308826.0- one originally produced on HyQuevet Wed Feb 18 11:4148 EST 2009 visible
[| 1D:<1068226,1234975309844.0~ w0 orginally produced on WyQueue Wed Feb 18 11:41:49 EST 2009 ordered
[| 1D:<108228. 1234975310862~ thres originally proguced on HyQuevet Wed Feb 18 11:41:50 EST 2009 ordered
[| 1D:<106228. 12349753158 120> four orginallyproduced on HyQueue Wed Feb 18 11:41:55 EST 2009 ordered
[| 1D:<106228.1234975317094.0» five riginally produced on HyQueue Wed Feb 18 11:41:57 EST 2009 ordered
[| 1D:<106228.1234975318500.0~ quitorginally produced on WyQueue 1 Wed Feb 18 11:41:58 EST 2009 ordered
[|1D:<106226.1234984341578.0> quitorginally produced on WyQueuet Wed Feb 18 14:12:21 EST 2009 visible

[] roung 10707 praous et

Console Screenshot 8. Message Browsing Step 2
7.2 MBean APIs for Message Browsing
Various cursor APIs (getMessages) are available on JMSServerRuntimeMBean, JMSDestinationRuntimeMBean and DurableSubscriberRuntimeMBean. This allows the users to create, sort and navigate message cursors and enables the users to browse the messages that are available on all the destinations of given JMSServer, the messages on a single given destination or the messages that are associated with a particular durable subscription.

These APIs include a selection parameter that enables you to select messages using a JMS message selector expression to fill the cursor with messages that meet specific selection criteria. After you fill the cursor, you can then browse through messages in the cursor.

When a cursor is created, a handle representing the cursor is returned to the user. No protection mechanism exists to prevent accessing the cursor from more than one management client. If you access a cursor from multiple management clients, the behavior on any of those clients is undefined.
Cursors are long lived entities that consume resources on the server. As a safeguard mechanism, cursors are created with an expiration timeout. If the cursor is not accessed during the specified timeout period, the cursor’s handle will be invalidated and all related server resources will be released.
The following table lists the message browsing APIs that are common to JMSServerRuntimeMBean, JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean.
	API Signature
	Description

	Long sort(String cursorHandle, Long start, String[] fields, Boolean[] ascending) throws ManagementException;
	Sorts the entire message result set managed by the cursor according to the JMS header attributes specified. The cursor position is set to the new position of the message corresponding to the "start" location before the sort is performed. The method returns the new cursor position.
@param cursorHandle The handle of the cursor.

@param start The location of the message before the sort that will be the first message returned after the sort. A value of -1 will place the cursor start position at the head of the new sort order.

@param fields The JMS header attributes on which to sort.

@param ascending Determines whether the sort of the corresponding fields element is in ascending or descending order.

@return The new position of the message specified by the start parameter.

@throws ManagementException Thrown when an internal JMS error occurs while processing the request.

@see javax.management.openmbean.CompositeData

	CompositeData getMessage(String cursorHandle, String messageID) throws ManagementException;
	Given a JMS message ID this method returns the corresponding message from the queue. If no message with the specified message ID exists on the destination, a null value is returned.
@param cursorHandle The handle of the cursor.

@param messageID The JMS message ID of the requested message.

@return The message in XML text representation corresponding to the specified message ID or null if one does not exist.

@exception ManagementException Thrown when an error occurs while performing the query.

@see javax.management.openmbean.CompositeData

	CompositeData getMessage(String cursorHandle, Long messageHandle) throws ManagementException;
	Returns the message associated with the specified cursor handle.
@param cursorHandle The handle of the cursor.

@param messageHandle The handle of the message within the cursor.

@return The message in XML text representation corresponding the specified item handle;

@throws ManagementException Thrown when an error occurs while performing the operation.

@see javax.management.openmbean.CompositeData

	Long getCursorStartPosition(String cursorHandle) throws ManagementException;
	Returns the cursor start position in the result set.
@param cursorHandle The cursor handle.

@return The cursor start position.

	Long getCursorEndPosition(String cursorHandle) throws ManagementException;
	Returns the cursor end position in the result set.
@param cursorHandle The cursor handle.

@return The cursor end position.

	CompositeData[] getItems(String cursorHandle, Long start, Integer count) throws ManagementException;
	Returns an array of items from the specified cursor location. The new cursor start position will be the location after the old cursor end position. The size of the array returned is determined by the count argument. An array smaller than the "count" value is returned if there are fewer items from the specified start position to the end of the result set.
A null value is returned if the size of the return array is zero. In this case, the cursor position will not change.

@param cursorHandle The cursor handle.

@param start The new cursor start location.

@param count The maximum number of items to return.

@return An array of items in CompositeData representation.

	CompositeData[] getNext(String cursorHandle, Integer count) throws ManagementException;
	Returns an array of items starting from the current cursor end position. The new cursor start position is set to be the location of the first item returned to the caller. The new cursor end position is set according to the size of the array returned, which is determined by the count argument. An array smaller than the "count" value is returned if there are fewer items from the specified start position to the end of the result set.
A null value is returned if the size of the array is zero. In this case, the cursor position will not change.
@param cursorHandle The cursor handle.

@param count The maximum number of items to return.

@return An array of items in CompositeData representation.

	CompositeData[] getPrevious(String cursorHandle, Integer count) throws ManagementException;
	Returns an array of items up to the current cursor start position. The new start position will be placed at the location of the first item in the set returned to the caller. The new cursor end position will be placed at the location after the last item in the set that is returned.
@param cursorHandle The cursor handle.

@param count The maximum number of item to return.

@return An array of item info objects.

In addition to the above listed APIs, both JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean have the following additional APIs for message browsing.
	API Signature
	Description

	String getMessages(String selector, Integer timeout, Integer state) throws ManagementException;
	Queries messages on the queue according to the provided message selector and state bitmask and returns a message cursor representing the result set.
The timeout parameter specifies the amount of time in seconds for which the cursor is valid. Upon timeout expiration the cursor is invalidated and the associated resources released.
@param selector A valid JMS message selector.

@param timeout The last access timeout for the cursor. The cursor resources will be reclaimed if it is not accessed within the specified time interval. A value of 0 indicates no timeout.

@param state A messaging kernel state bitmask. Refer to the messaging kernel MessageElement interface for a description of the various message states.

@exception weblogic.management.ManagementException Thrown when the provided message selector contains invalid syntax, or when an internal error is encountered.

	String getMessages(String selector, Integer timeout) throws ManagementException;
	Queries messages on the queue according to the provided message selector and returns a message cursor representing the result set.
The timeout parameter specifies the amount of time in seconds for which the cursor is valid. Upon timeout expiration the cursor is invalidated and the associated resources released.
@param selector A valid JMS message selector.

@param timeout The last access timeout for the cursor. The cursor resources will be reclaimed if it is not accessed within the specified time interval. A value of 0 indicates no timeout.

@exception weblogic.management.ManagementException Thrown when the provided message selector contains invalid syntax, or when an internal error is encountered.

	CompositeData getMessage(String messageID) throws ManagementException;
	Given a JMS message ID this method returns the corresponding message from the queue. If no message with the specified message ID exists on the destination, a null value is returned.
@param messageID The JMS message ID of the requested message.

@return The message corresponding to the specified message ID or null if one does not exist.

@exception weblogic.management.ManagementException Thrown when an error occurs while performing the query.

For more information on the MBean APIs, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSMessageManagementRuntimeMBean.html
and

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSMessageCursorRuntimeMBean.html.

7.3 Message Browsing using WLST

For all message browsing activity, you have to first navigate to the appropriate JMSServer, Destination or the Durable Subscription runtime mbean.

7.3.1 Browse/get all the messages from queue “MyQueue1”

create a cursor to get all the messages in the queue

by passing ‘true’ for selector expression,

and long value for cursor timeout

cursor1=cmo.getMessages(‘true’,9999999)
next find the cursor size

size=cmo.getCursorSize(cursor1)
get all ‘size’ number of messages from the cursor starting
from position 1

msgs=cmo.getItems(cursor1, 1, size)

print all the messages’ contents

print msgs

WLST Snippet 6 – Browse/get all the messages on a queue

7.3.2 Get all the messages from “MyQueue1” that matches the selector “JMSCorrelationID = ‘sent_to_MyQueue1’”

create a cursor to get all the messages in the queue

that matches the selector expression,

pass in the selector expression and long value for cursor timeout

cursor1=cmo.getMessages(‘JMSCorrelationID LIKE \’sent_to_MyQueue1\’’,9999999)
next find the cursor size

size=cmo.getCursorSize(cursor1)
get all ‘size’ number of messages from the cursor starting
from position 1

msgs=cmo.getItems(cursor1, 0, size)

print all the messages’ contents

print msgs

WLST Snippet 7 – Browse/get all the messages on a queue

7.3.3 Get all the messages from “MyQueue1” that are in a given state

The following snippet would get all the UOO messages that are not available for consumption yet, and are in a state called “ordered” (bitmask 16).

Note: Please see the Table 2 for different message state bitmask values

create a cursor to get all the UOO messages from the queue that

belongs to the UOO named “my_uoo” that are currently

in “ordered” state.

Note 1: The third argument value represents the ‘state’.

Note 2: To get all the ordered messages that may belong

to more then one UOO, pass the first argument as ‘true’
cursor1=cmo.getMessages(‘JMS_BEA_UnitOfOrder LIKE \’my_uoo\’’,9999999,16)
next find the cursor size

size=cmo.getCursorSize(cursor1)
get all ‘size’ number of messages from the cursor starting
from position 1

msgs=cmo.getItems(cursor1, 1, size)

print all the messages’ contents

print msgs

WLST Snippet 8 – Browse/get all the messages on a queue

7.3.4 Navigating the cursor by one or more message at a time

create a cursor to get all the messages in the queue

by passing ‘true’ for selector expression,

and long value for cursor timeout

cursor1=cmo.getMessages(‘true’,9999999)
get the next 5 messages starting from the cursor’s

current end position

this will adjust the cursor’s current start position and

end position “forwards” by 5

msgs = cmo.getNext(cursor1, 5)

print all the messages’ contents

print msgs

get 3 messages upto the cursor’s current start position

this will adjust the cursor’s current start and end position backwards by 3

this will the current position of the message by 1

msgs = cmo.getPrevious(cursor1, 3)

print all the messages’ contents

print msgs
WLST Snippet 9 – Navigating the message cursor

7.3.5 Getting just one message from the queue using the JMSMessageID

At times, you may want to just get one message using the JMSMessageID directly from the queue, without creating the message cursor.

get one message from the queue

by passing the JMSMessageID
msg=cmo.getMessage(‘ID:<507699.1233857476766.0>’)
print the message contents

print msg

WLST Snippet 10 – Get one messages from the queue directly without using the cursor

7.3.6 Printing the Messages

The following shows the message content in “CompositeData” format when printed using “print” command. Note that if the print argument represents an array of messages (returned by: getItems(), getNext() or getPrevious()), then the all the messages would be printed at once.

array(javax.management.openmbean.CompositeData,[javax.management.openmbean.CompositeDataSupport(compositeType=javax.management.ope

nmbean.CompositeType(name=MessageInfo,items=((itemName=BodyIncluded,itemType=javax.management.openmbean.SimpleType(name=java.lang.

Boolean)),
(itemName=ConsumerID,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)),
(itemName=DestinationName,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)),
(itemName=Handle,itemType=javax.management.openmbean.SimpleType(name=java.lang.Long)),
(itemName=MessageSize,itemType=javax.management.openmbean.SimpleType(name=java.lang.Long)),
(itemName=MessageXMLText,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)),
(itemName=SequenceNumber,itemType=javax.management.openmbean.SimpleType(name=java.lang.Long)),
(itemName=State,itemType=javax.management.openmbean.SimpleType(name=java.lang.Integer)),
(itemName=VersionNumber,itemType=javax.management.openmbean.SimpleType(name=java.lang.Integer)),
(itemName=XidString,itemType=javax.management.openmbean.SimpleType(name=java.lang.String)))),
contents={BodyIncluded=false, ConsumerID=null, DestinationName=MyJm

sSystemResource!MyQueue1, Handle=1, MessageSize=35, MessageXMLText=<mes:WLJMSMessage xmlns:mes="http://www.bea.com/WLS/JMS/Message">

 <mes:Header>

 <mes:JMSMessageID>ID:<507699.1233857476766.0></mes:JMSMessageID>

 <mes:JMSCorrelationID>sent_to_MyQueue1</mes:JMSCorrelationID>

 <mes:JMSDeliveryMode>PERSISTENT</mes:JMSDeliveryMode>

 <mes:JMSExpiration>0</mes:JMSExpiration>

 <mes:JMSPriority>5</mes:JMSPriority>

 <mes:JMSRedelivered>false</mes:JMSRedelivered>

 <mes:JMSTimestamp>1233857476766</mes:JMSTimestamp>

 <mes:Properties>

 <mes:property name="JMS_BEA_UnitOfOrder">

 <mes:String>my_uoo</mes:String>

 </mes:property>

 <mes:property name="JMSXDeliveryCount">

 <mes:Int>0</mes:Int>

 </mes:property>

 </mes:Properties>

 </mes:Header>

</mes:WLJMSMessage>, SequenceNumber=1, State=1, VersionNumber=1, XidString=null})])
WLST Snippet 11 – Message content in the CompositeData format

7.4 Caveats and Best Practices

As the message management operations involve creating the cursor snapshots that hold the messages for further operations it is recommended to avoid performing these operations in large batches which can easily lead to Out Of Memory (OOM) conditions. Instead break them into smaller batches so less server resources will be used.

8 Message Manipulation
In addition to message browsing, the Message Management features and capabilities in WebLogic Server enable you to administratively move and delete messages from JMS destinations.
When moving or deleting messages, you must first select a list of messages usually by means of “message selector”.
8.1 Move Messages

This feature allows the user to “move” the messages from one destination to another, both by programmatically as well as by administratively using the related runtime MBean APIs and Console.
Users might want “move” messages for various reasons. For example, users might want to free up some of the resource usage on an overloaded source server temporarily by moving a set of (large?) messages from that server (source destination) to another (target destination) and moving them back after short while to avoid the whole server falling over and disrupting the service. The classic use case is where a destination or JMSServer has reached its maximum “quota” limit for the number messages (or total bytes), has no active consumers draining from that destination and producers are continue to produce (with or without “quota blocking send”) onto that destination. In this scenario, the message production onto that destination would eventually fail with “javax.jms.ResourceAllocationException”. This issue can be addressed by temporarily moving the messages to another destination and eliminate the disruption to the message production.
Another example for “move” would be the cases, where the user wants to manually move a particular problematic message or set of messages permanently onto an “error” destination for later investigation. In both cases, users can either use RuntimeMBean APIs, WLST or Administration Console to perform the move operations.

However, users must be aware of certain pre-conditions that need to be met for a successful move operation. Also you must be aware of how a certain runtime attributes/states on the messages as well as on the source/target destinations would be affecting, both before and after the “move” operation is performed.

Before the Move Operation:

· Message states:

· A message can only be moved if its current state is “visible”, “delayed” or “ordered” (see Table 2.1.2 Message States above).
· “In-flight” (pending) messages that are being produced (uncommitted transactional send) or consumed (un-acked/uncommitted receive) cannot be moved. (See Transaction Management below).
· When a UOO message is moved, it will get added to the same UOO on the target destination as though it was produced programmatically; it will be added to the end of the ordered sequence if one already exists.
· Destination States/Types:

· Messages cannot be moved to a target destination that is in the “production paused” state.
· Target destination cannot be a SAF imported destination or a distributed destination. However a distributed destination member can be selected as the target destination for the move.

· When the target destination is a topic, then the message will be distributed to all the subscribers matching the selector. Messages moved to an individual durable subscription will be made available to that individual subscriber only.
After the Move Operation:

· Message States:

· All the message state information would be preserved on the target destination, except when the UOO messages got moved, see “Caveats” for more information.

· The Move operation preserves all the message information including header properties and user properties except the following: (Confirm with Alex/Team)

· The delivery count on the message will be reset to “0” when it is placed on the target destination. In other words both the Message RedeliveryLimit and Message RedeliveryCount values are not preserved during the move.
· Messages with PERSISTENT delivery mode will be downgraded to NON-PERSISTENT if the target destination does not support persistence

· All the messages that moved and are in “visible” state would be available for consumption immediately.

Message Statistics related to the Move Operation:

· The following message statistics information would get updated during the move operation.

· MessagesMovedCurrentCount – would get updated on the source destination to reflect the number of messages that got moved from this destination since the last restart/boot.

· All the message runtime statistics (discussed in section 5.1.2 above) on the target destination (and the durable subscription) would get updated to reflect the number of messages that moved onto that destination as if they were directly produced on that destination.
8.1.1 Moving Messages using Console
Console provides a page flow for performing message move. The first step is to navigate to the source destination’s monitoring page (which is different from the first step mentioned in using WLST to perform the move messages) and display messages in the table form (see screenshot 7.3 above). Once you are in the “Summary of JMS Messages” page, you see the options for message “move” along with other message manipulation operations. From this screen you can either move all the messages or a selected list of messages to a different destination. To select a list of messages for move, you can use the “checkbox” in front of each message as shown in the following screenshot.

[image: image14.jpg]>JMS Modul

myJmsSystemResource >MyQueue >Summary of JMS Messages

Summary of JMS Messages.

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages to another destination, export message contents in XHL format to another file, import XML formatted message contents from another file, or drain allthe
messages from a destination

Click on a message to viewts contents

Message Selector:]

P Custorize this table

JMS Messages(Filtered - More Columns Exist)

O | o corrid Time Stamp State string
D:<106226 1234 "oV Al p o one originally produced on HyQueuet Wed Feb 18 11:41:48 EST 2009 visible
1D:<106226.1234975300844 0> two originally produced on lyQueue1 Wed Feb 18 11:41:49 EST 2009 ordered
1D:<106226.1234975310562.05 three originally produced on HyQueuet Wed Feb 18 11:41:50 EST 2000 ordered

[[1D:<106226.1234075315812.0- four originallyproduced on HyQueue Wed Feb 18 11:41:55 EST 2000 ordered

[[1D:<106226.1234975317004.0> v originally produced on HyQueue Wed Feb 18 11:41:57 EST 2009 ordered

[|1D:<106226.1234075318500.0 quitorginally produced on WyQueue Wed Feb 18 11:41:58 EST 2000 ordered

[|1D:<106226.1234984241578.0 quitorginally produced on WyQueuet Wed Feb 18 14:12:21 EST 2000 visible

Sroumng 10707 praous et

Console Screenshot 9. Message Move Step 1
The next step in the process is to click on the “Move” button which drops down to “Move” and ‘Move All”. For this example, we are going to use the “Move” option to move the select list of messages. Once the “Move” is clicked, the next couple of pages allow the user to select the “Target” JMSServer/destination for move as shown in the screenshot below:

[image: image15.jpg]e urce >1

ummary of IS Messages

Move JMS Messages

) - [l oo |

Move JMS Messages

Selecttne JWS sever hosting the target destination where the messages will be relocated

©ID:<106226.1234975308825.0~
© ID:<106226.1234975309844.0>
© 1D:<106226.1234975310562.0>

ms server:

[WseesmSSener v

|

MyJMSSenert

Console Screenshot 10. Message Move Step 2
In this example, the target JMSServer is selected as ‘MyJMSServer2” and the next page list all the available destinations from that JMSServer to select as shown in the next screenshot.

[image: image16.jpg]Summary of JS Vessages

Move JMS Messages

I]

Move JMS Messages

[Selectine target destination where the messages wil be relocated.

Destination: myJmsSystemResourcelllyQueue2 v

Console Screenshot 11. Message Move Step 3
After selecting the appropriate destination (in this case “myJmsSystemResource!MyQueue2”, you need to click on the “Finish” button to complete the message move operation. After successful completion of the move operation, the Console will display the original “Summary of Messages” screen (as shown in step 1) a log message indicating the success and the message table only list the messages that are still on this destination.

The moved messages can be seen on the target destination (MyQueue2) as shown below.

[image: image17.jpg]= »JS Modules >myJmsS stemResource 1

Summary of JVIS Messages

Messages

[Selected JMS messages have been moved.

Summary of JMS Messages

“This page summarizes the available messages for a stand-alone queue, a distibuted queue, or a topic durable subscriber. Use this page to view message details, Create new messages, delete
selected messages, move messages to another destination, export message contents in XHIL format to another ile, import XML formatted message contents from another file or drain allthe

messages from a destination

Click on a message to viewts contents

Message Selector:

P Customize this table

JMS Messages(Filtered - More Columns Exist)

oz

\

Showing 110 4 of4 Previous | Next

O fma Corrld Time Stamp. State String
[| 10:<108226. 1234975315812 four originally produced on yQueue 1 Wed Feb 18 1114155 EST 2009 isible
[|1D:<108226.123497531704.0> five riginally produced on HyQueue Wed Feb 18 11:41:57 EST 2009 ordered
[0 | 1D:<106226 1234975318500 0~ quitorginally produced on WyQueue 1 Wed Feb 18 11:41:56 EST 2009 ordered
[| iD:<106228.1234984341578.0- quitorginally produced on WyQuee 1 Wed Feb 18 14:12:21 EST 2009 visible

Showing 110 4 of 4 Previous | Next

Console Screenshot 12. Message Move Step 4
8.1.2 MBean APIs for Moving Messages
	API Signature
	Description

	Integer moveMessages(String selector, CompositeData targetDestination) throws ManagementException;
	Moves the set of messages that match the specified selector to the target destination. The move operation is guaranteed to be atomic for the selected messages.
@param selector A JMS message selector that identifies the messages to move.

@param targetDestination A JMS destination that the messages will be moved to. This parameter needs to be passed in the form of “composite data”.
@return The number of messages affected.

@exception weblogic.management.ManagementException Thrown if an error occurs while processing the request. The selected messages will remain on the source destination.

	Integer moveMessages (String selector, CompositeData targetDestination, Integer timeout) throws ManagementException;
	Same as the previous API, except that this takes the third argument, “timeout”, indicating how long to wait for the move operation to complete.

For more information on the MBean APIs, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSMessageManagementRuntimeMBean.html
8.1.3 Moving Messages using WLST
This following example shows how to move a particular message that matches a selector from “MyQueue1” to “MyQueue2” directly using the destination runtime MBeans.

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

first navigate to the target destination “MyQueue2”

cd (‘MyJMSServer2/Destinations/MyJmsSystemResource!MyQueue2’)

assign the current destination runtime into a variable

NOTE: Here we have to get the CompositeData representation

of the destination of the ‘target’ destination for the move operation

target=cmo.getDestinationInfo()

next move to the source destination where the messages are

cd (‘../../..’)

cd (‘MyJMSServer1/Destinations/MyJmsSystemResource!MyQueue1’)

now move one message based on the JMSMessageID

note that if the selector (first argument) is passed in as ‘true’, then

all the messages from this destination would be moved

count=cmo.moveMessages(‘JMSMessageID LIKE \’ ID:<507699.1233870300047.0>\’’,target)

print how many messages are moved by the above move operation

print count

the move operation is also tracked in the system so you can get the total
number of moved messages from this destination since the destination was

last booted.

movedcurrentcount=cmo.getMessagesMovedCurrentCount()

print how many messages are moved since the last boot

print movedcurrentcount

WLST Snippet 12 – Move messages that matches the selector from one queue (source) to another (target) queue

Note 1: The “Move” message operation is done transactionally and hence either all the messages that match the selector will be moved or none of them will be moved. This in some cases may block the operation indefinitely (for example a large backlog of big messages). To overcome this situation, you can specify the “timeout” value for this operation such that the “move” operation would terminate after the specified timeout.

Note 2: Also, for the move operation the “target” destination has to be passed in as an argument in the form of “CompositeData” representation. So, the first step to perform “move” operation in WLST is to navigate to the target destination and get the DestinationInfo (which is in the form of CompositeData) and store it in a local variable and then pass it as the argument to the moveMessages API.

8.1.4 Caveats and Best Practices

As a best practice, messages should only be moved if the source destination is in “consumption paused” state (see section 4 above) to prevent consumers from consuming messages that are currently selected for moving to another destination.

Message move operation is performed in global transaction to avoid message loss in the event of system failure while performing the move. A system failure during the processing will result in an exception being thrown to the client. If a global transaction context exists on the thread processing the move message operation, the transaction will be suspended before the move operation, and resumed after it completes.

Currently, when UOO messages got moved (as whole or partially) and if the target destination already has messages for the same UOO, then the moved messages would be added to the end of the existing message list and the first message from the moved list would be marked as state “ordered” regardless of its original state. If the target destination does not have any messages for the same UOO, the first messages from the moved list would marked as state “visible” and immediately available for consumption and this would break ”ordering” of UOO, especially when partial list of UOO messages got moved. At the same time, on the source destination, the next message in the UOO list that was previously in an “ordered” state would be changed to state “visible” and becomes available for consumption immediately. Note that moving back the previously moved messages to the original destination exhibits the same behavior and hence they get appended to the end of the message list of an existing UOO.
Also, performing the “move” operation of the UOO messages can cause additional problems regardless of whether any UOO messages remain in the original destination or not and whether the UOO messages got moved as “whole” or “part”. Since the destination for producing the UOO messages is pre-selected at the very first message “send” operation and all the subsequent “send” operations will get directed to the same destination based on some “loading balancing/routing algorithm” to ensure the guaranteed ordering of those UOO messages. Today, there exists some disconnect between administrative message “move” operation and the underlying load balancing/routing machinery. So, even when the move is performed for the “whole” list of UOO messages, any new UOO messages produced for the same UOO could still load-balance to the original destination - which effectively splits the UOO and its ordering. For path service based routing of UOO, the path service does not know about the move, or at most may figure out that the old destination doesn't own the UOO (but not where the UOO was moved). Hash based routing will always send new messages for the UOO to the same place. Both of these cases may potentially lead to corrupted UOOs.
And hence, users must try to avoid performing “move” operations of UOO messages for the reasons explained above.

8.2 Delete Messages
Similar to the message “move” feature described above, the message “delete” feature allows the users to delete certain messages both programmatically and administratively using the runtime MBean APIs and Console. Again, users might want perform the message “delete” for various reason such as removing a problematic “poison” message from the destination. Also, similar to moving messages, deleting messages also enforces certain pre-conditions to be met and may affect certain message states and/or destination runtime statistics attributes.

When deleting messages, note the following:

· The delete operation is only supported on queues, durable subscriptions and distributed queue members and not supported on topics, imported destinations, or whole distributed destinations.

· A message can only be deleted if its current state is “visible”, “delayed” or “ordered” (see table 2.1.2 Message States).
· “In-flight” (pending) messages that are being produced (uncommitted transactional send) or consumed (un-acked/uncommitted receive) cannot be deleted
· The destination will be locked while performing the delete operation so that the message deletion occurs in isolation with respect to other events on the destination
8.2.1 Deleting Messages using Console
To delete messages from a destination using Console, you need to first navigate to that destination’s monitoring page and select that destination and click on “Show Messages” (see screenshot 7.3 above) button to display the “Summary of JMS messages” page that has the “Delete” option. Users can then either use “Delete” or “Delete All” option to delete a selected list of messages or to delete all the messages available on that destination as shown in the screenshot below:

[image: image18.jpg]Home =5 Modules >myJmsSystemR

>Summary of IS Messages

Summary of JMS Messages

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages to another destination, export message contents in XL format to another file, import XML formatted message contents from another file, or drain all the

messages from a destination

Click on a message to viewts contents.

Message Selector:

\

P Customize this table

JIS MessagesFiltered - More Columns Exist)

Showing 110 30f3 Previous | Next

Delete
Corrid Time Stamp State String
Delete All
Jo7s308828.0- one originally produced on HyQueue Wed Feb 18 11:41:48 EST 2009 visible
1D:T06228.1234975300844.0> two originlly produced on MyQueue1 Wed Feb 18 11:41:49 EST 2009 ordered
1D:<106226.1234975310562.0> three originally produced on MyQueued Wed Feb 18 11:41:50 EST 2009 ordered

I EZE

Showing 110 30f3 Previous | Next

Console Screenshot 13. Message Delete Step 1
Once either “Delete” or “Delete All” is clicked, the next page would display a confirmation page containing all the selected messages’ IDs, before performing the final action as shown below.

[image: image19.jpg]Delete JMS Messages.

Delete JWIS Messages

You have selected the following items to be deleted
© ID:<106226.1234975308828.0>
© ID:<106226.1234975309844.0>
§ ID:<106226.1234975310562.0-

[Ciick ves to delete,

Console Screenshot 14. Message Delete Step 2
By Clicking “Yes” in the confirmation, the actual delete operation is performed the following page will be displayed to confirm the successful completion with a log message indicating how many messages got deleted. Note that in this example, we have deleted all the messages from the destination and hence the “JMS Messages” table is shown empty.

[image: image20.jpg]Home >JMS M

>mymsSysiemR

Summary of JWIS Messages

Messages

I3 messages have been deleted.

Summary of JMS Messages

‘This page summarizes the available messages for a stand-alone queue, a distibuted queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages o another destination, export message contents in XHL format to another ile, import XML formatted message contents from another file, or drain allthe
messages from a destination

Click on a message to view ts contents

Message Selector:

P Customize this table

JMS MessagesFiltered - More Columns Exist)

O [ma Corrld.

\

Showing 110 0 f0 Previous | Next

Time Stamp

State String

There are no tems to display

Showing 110 0 f0 Previous | Next

Console Screenshot 15. Message Delete Step 3
8.2.2 MBean APIs for Deleting Messages
The APIs for deleting messages are available on the JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean.
	API Signature
	Description

	Integer deleteMessages(String selector) throws ManagementException;
	Deletes the set of messages from the destination that are qualified by the specified JMS message selector.
@param selector A JMS message selector to identify which messages to delete.

@return The number of messages affected.

@exception weblogic.management.ManagementException Thrown if an error occurs while processing the request. The selected messages will remain on the source destination.

For more information on MBean APIs, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSMessageManagementRuntimeMBean.html
8.2.3 Deleting Messages using WLST
This example shows how to delete a set of messages that matches a selector expression from “MyQueue1”.

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

navigate to “MyQueue1” that we want to browse

cd (‘Destinations/MyJmsSystemResource!MyQueue1’)
delete all the messages belong to UOO “my_uoo”

Note that this deletes both visible and invisible messages of the

given UOO

To delete all the messages pass ‘true’ as the first argument

count = cmo.deleteMessages(‘JMS_BEA_UnitOfOrder LIKE \’my_uoo\’’)

print how many messages are deleted

print count

Also, you can get the current deleted messages count as follows

this value returns the total count of all the messages deleted from

this destination since the last time it was booted

deletedcurrentcount = cmo.getMessagesDeletedCurrentCount()

print how many messages are deleted

print deletedcurrentcount

WLST Snippet 13 – Delete messages from a queue that matches the selector

8.2.4 Caveats and Best Practices

You should pause a destination for message consumption before deleting the messages from it to prevent consumers from consuming messages that are selected for deletion.

The message delete operation is NOT performed under a global transaction, hence in the event of a system failure, it is possible to have partial outcome whereby only a portion of the messages matching the selector have been deleted.

8.3 New Message Production Using Console

In addition to the “Move” and “Delete” of messages, WebLogic Console also offers a way to create and produce new messages (of TextMessage type) administratively on a given destination using the Console. Note that there is no runtime MBean APIs or the WLST equivalent exists for new message production and hence you need to follow the standard javax.jms programming APIs to produce new messages programmatically.

To produce messages administratively using Console, you need to first navigate to the runtime monitoring page of a given destination and select that destination from the table and click “Show Messages” (see screenshot 7.3 above). From this page users can click on “New” button as shown below, would take to the next page where users can populate the message contents.
[image: image21.jpg]Home >JMS Modul

es >myJmsSystemResource >MyQueue2

>Summary of JUS Messages

Summary of JMS Messages

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages to another destination, export message contents in XL format to another file, import XML formatted message contents from another file or drain allthe
messages from a destination

Click on a message to viewts contents.

Message Selector:

P Customize this table

JNS Messages(Filtered - More Columns Exist)

\

Showing 1100 0f0 Previous | Next

Time Stamp

state String

There are no items to display

Showing 1100 0f0 Previous | Next

Console Screenshot 16. New Message Production Step 1
The message creation page displays some of the standard javax.jms.Message header fields and a text box to enter the message body as shown in the screenshot shown below.
[image: image22.jpg]yImsSystemResource M

Summary of JWIS Messages

JMS Message

“The following properties will be usedto produce a JMS message.

o —
- —

Priority:
Delivery Mode:
Delivery Time:

Redelivery Limit

[Tnis message is produced from Console

Console Screenshot 17. New Message Production Step 2
After populating the appropriate values, users can click on the “OK” button to produce this message on the destination and completes the new message production. The next page will display the confirmation message along with the “JMS Messages” table holding the newly produced message as shown in the screenshot below.

[image: image23.jpg]X

>Summary of IS Nessages

Messages

IS message sent successfully.

Summary of JMS Messages.

‘This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages to another destination, export message contents in XHL format to another file, import XML formatted message contents from another ile or drain allthe
messages from a destination

Click on 3 message to view ts contents.

Message Selector:

P Customize this table

JNS MessagesFiltered - More Columns Exist)

Lo § ool] ool] s o

O |oa

Showing 110 10f1 Previous | Next

Corrid

Time Stamp

State String

07 [iD:<838575.1235404741408.0~

Admin_blessage

Tue Feb 24 11:59:01 EST 2000

visible

£ I £ T

Showing 11010f1 Previous | Next

Console Screenshot 18. New Message Production Step 3
8.3.1 Caveats and Best Practices

The new message production functionality available on the Console currently only supports “TextMessage” with a limited set of message header/property values editing.

9 Message Export and Import
This feature enables you to export and import JMS messages to/from a destination in the form of XML stored in a file based on the schema.TBD. This feature can be used in many messaging scenarios and one such scenario is where you might want to export a particular message (with a high importance) that was accidently sent with default priority, to an XML file and edit its JMSPriority attribute value (set to 9) offline and then import it back to the destination so it can get processed before all the other messages in the queue.

Today, the “export” functionality is available only via Administration Console, whereas the “import” functionality is available both via the Console as well as through the runtime MBean APIs and WLST.

9.1 Export Messages

Export message operation creates the XML file on the file system containing the messages that are based on the XML schema that can be easily edited by any standard XML editor or a text editor and later can be imported back on the destination (See Import Messages below) During this operation no changes are made to the existing messages whatsoever and are continue to exist on the destination.

9.1.1 Export Messages Programmatically
As mentioned earlier, currently there is no runtime MBean APIs available to perform this operation programmatically. But here is the pseudo code to implement this functionality.

/**

 * pseudo code for JMS Message Export operation based on

 * current implementation in the Administration Console
 */
 import java.io.File;

 import java.io.FileOutputStream;
 import java.io.OutputStreamWriter;

 import java.io.BufferedWriter;

 import java.io.Writer;

 import java.io.IOException;

 import java.util.ArrayList;

 import java.util.Collection;
 import org.w3c.dom.Document;

 import org.w3c.dom.Element;

 import org.w3c.dom.Node;

 import weblogic.apache.xerces.dom.DocumentImpl;

 import weblogic.apache.xml.serialize.OutputFormat;

 import weblogic.apache.xml.serialize.XMLSerializer;

 import weblogic.management.runtime.JMSDestinationRuntimeMBean;

 import weblogic.management.runtime.JMSDurableSubscriberRuntimeMBean;

 import weblogic.management.runtime.JMSMessageManagementRuntimeMBean;

 import javax.management.openmbean.CompositeData;
 import weblogic.jms.extensions.JMSMessageInfo;

 import weblogic.jms.extensions.WLMessage;
 import weblogic.messaging.kernel.Cursor;

 public void exportMessages(

 String fileName,

 JMSDestinationRuntimeMBean destination,

 /* or JMSDurableSubscriberRuntimeMBean durableSubscriber */,

 String messageSelector) throws Exception {

 BufferedWriter bw = null;

 try {

 File selectedFile = new File(file);

 if (destination == null /* or durableSubscriber == null */) {
 throw new IllegalArgumentException("A valid destination runtime or durableSubscriber runtime mbean must be specified");

 }
 JMSMessageManagementRuntimeMBean runtime = (JMSMessageManagementRuntimeMBean) destination /* durableSubscriber */;
 bw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file),"UTF-8"));

 String xmlDeclaration = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>";

 String exportStart = "<JMSMessageExport>";

 final String exportEnd = "</JMSMessageExport>";

 final String indent = " ";

 bw.write(xmlDeclaration);

 bw.newLine();

 bw.write(exportStart);

 bw.newLine();

 bw.newLine();

 bw.write(indent);
 CompositeData[] messageInfos = null;

 OutputFormat of = new OutputFormat();

 of.setIndenting(true);

 of.setLineSeparator("\n"+indent);

 of.setOmitXMLDeclaration(true);

 XMLSerializer ser = getXMLSerializer(bw, of);

 String cursor = JMSUtils.getJMSMessageCursor(runtime, selector,0);
 while ((messageInfos = runtime.getNext(cursor,new Integer(2000))) != null) {

 for (int i = 0; i < messageInfos.length; i++) {

 JMSMessageInfo mhi = new JMSMessageInfo(messageInfos[i]);

 Long mhiHandle = mhi.getHandle();

 CompositeData m = runtime.getMessage(cursor, mhiHandle);

 // need to get the message with body

 JMSMessageInfo mbi = new JMSMessageInfo(m);

 WLMessage message = mbi.getMessage();

 ser.serialize(message.getJMSMessageDocument());

 messageInfos[i] = null;

 }

 }

 bw.newLine();

 bw.write(exportEnd);

 bw.flush();

 bw.close();

 runtime.closeCursor(cursor);

 LOG.success("jms exportmessage success");

 } catch (Exception e) {

 try {

 if(bw != null)

 bw.close();

 } catch (IOException ioe) { }

 LOG.error(e);

 LOG.error("jms exportmessage error");

 throw(e);

 }

 LOG.success("jms exportmessage success");

 }

 private XMLSerializer getXMLSerializer(
 Writer writer,
 OutputFormat of) {

 return new XMLSerializer(writer, of) {

 protected void printText(

 char[] chars,
 int start,
 int length,
 boolean preserveSpace,
 boolean unescaped) throws IOException {

 super.printText(chars,start,length,true,unescaped);

 }

 protected void printText(

 String text,
 boolean preserveSpace,
 boolean unescaped) throws IOException {

 super.printText(text,true,unescaped);

 }

 };

 }
 public static String getJMSMessageCursor(
 JMSMessageManagementRuntimeMBean runtime,
 String selector,
 int cursorTimeout) throws weblogic.management.ManagementException

 {

 return runtime.getMessages(
 selector,
 new Integer(cursorTimeout),

 new Integer(Cursor.ALL));

 }

Java Snippet – Pseudo code for exporting messages using JMS Runtime MBeans
9.1.2 Export Messages using Console
Console provides a page flow for performing the message export operation. As always, the first step for performing the message operation is to navigate to the destination’s monitoring page and clicking on the destination name from the table, then clicking the “Show Messages” button to display the existing messages.

In this page the “Export” button is displayed with two options: “Export’ and “Export All” as shown in the screenshot below:

[image: image24.jpg](=1 >Summary of JUS Messages

Summary of JMS Messages

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages to another destination, export message contents in XHL format to another ile, import XHL formatted message contents from another file, or drain allthe
messages from a destination

Click on a message toview ts contents.

Hessae slcor \

P Customize this table

JMS MessagesFiltered - More Columns Exist)

Export
O [oa Cqrrid Time Stamp. State String
Export Al
o four originaly produced on HyQueve Wed Feb 18 11:41:55 EST 2009 visible
[|1D:<106226.1234975317094.0» e originally produced on HyQueue Wed Feb 18 11:41:57 EST 2009 ordered
[| iD:<108225.1234975318500.0- quitorginally produced on WyQueet Wed Feb 18 11:41:58 EST 2009 ordered
[|iD:<108226.1234984341578.0~ quitorginally produced on WyQueue 1 Wed Feb 18 14:12:21 EST 2009 visible

Showing 1104 of4 Previous | Next

Console Screenshot 19. Export Message Step 1
When the “Export All” option is selected, the following page would display a file selection feature, allowing the user navigate the local file system directory structure and select a directory or a XML file to which the messages would be exported. By default, the Console assigns the file name as “jmsmessages.xml” under the “root” directory of the file system where the WebLogic Domain is configured. The screenshot below illustrates this page.

[image: image25.jpg]> Summary of JMS Wessages

Export JMS Messages

Export JMS Messages
Selector enter a file to export messages to. The file must have a xmi extension. Ifthe file exists itwil be overwritten

patn: D:\jmsmessages xml

Recently Used Paths: N
Current Location: 192.168.1.102\D:

O eciipse

© Ecioseworksoace
O oracte

I recveLer

O temp

Console Screenshot 20. Export Message Step 2
Once the appropriate file name is selected for export, clicking “OK” will take you to the confirmation screen as shown blow:

[image: image26.jpg]TS Modules >mylmesystemAes:

Messages

Summary of JMS Messages

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages o another destination, export message contents in XHIL format to another file, import XML formatted message contents from another file, or drain allthe
messages from a destination

Click on a message to view ts contents.

Message Selector:

P Custornize this table

JWS MessagesFiltered - More Columns Exist)

N Y I I

Showing 1to 4 of 4 Previous | Next

O [moe Corrld Time Stamp State String
[| 1:<108226. 12349753158 120> four originallyproduced on HyQueue Wed Feb 18 11:41:55 EST 2009 isible
[| 10:<108226.1234975317094.0- v originally produced on yQueue Wed Feb 18 11:41:57 EST 2009 ordered
[| 1D:<106228.1234975318500.0- quitorginally produced on WyQueue Wed Feb 18 11:41:56 EST 2009 ordered
[|1D:<108226.1234984341578.0~ quitorginally produced on WyQueuet Wed Feb 18 14:12:21 EST 2009 visible

1 I

Showing 1104 of4 Previous | Next

Console Screenshot 21. Export Message Step 3
Note the log message indicates “Selected JMS Messages have been exported”, and when “Export All” option is used without selecting any messages, then all the messages from that destination would get exported to the file.

The contents of the XML file containing a single exported message is shown below:

 <?xml version="1.0" encoding="UTF-8" ?>

- <JMSMessageExport>
- <mes:WLJMSMessage xmlns:mes="http://www.bea.com/WLS/JMS/Message">
- <mes:Header>
 <mes:JMSMessageID>ID:<106226.1234975315812.0></mes:JMSMessageID>

 <mes:JMSCorrelationID>four originally produced on MyQueue1</mes:JMSCorrelationID>

 <mes:JMSDeliveryMode>PERSISTENT</mes:JMSDeliveryMode>

 <mes:JMSExpiration>0</mes:JMSExpiration>

 <mes:JMSPriority>4</mes:JMSPriority>

 <mes:JMSRedelivered>false</mes:JMSRedelivered>

 <mes:JMSTimestamp>1234975315812</mes:JMSTimestamp>

- <mes:Properties>
- <mes:property name="JMS_BEA_UnitOfOrder">
 <mes:String>GREEN</mes:String>

 </mes:property>
- <mes:property name="JMSXDeliveryCount">
 <mes:Int>1</mes:Int>

 </mes:property>
 </mes:Properties>
 </mes:Header>
- <mes:Body>
 <mes:Text>four</mes:Text>

 </mes:Body>
 </mes:WLJMSMessage>
 </JMSMessageExport>
XML Snippet 1. jmsmessages.xml – created from export message operation
9.2 Importing Messages
Exported messages can be imported back onto a destination using this feature. During import, the server creates new messages based on the data in the XML file or the CompositeData representation of the messages. As import of messages is done by creating new messages, some of the message header properties are preserved and others are populated with new values.

As mentioned at the beginning of this section, users might be doing export/import of messages to do offline editing of the message contents.
And hence, while importing onto the same destination where the messages are originally exported from, users can choose to “replace” the existing messages with ones that are in the XML file. Note that the “replace” option is only available through MBean APIs and not in Console.
· When importing message(s) without replaceOnly set to true, the move operation will not replace existing messages on the destination, and hence when a message from two “topic subscribers” get moved to a single target destination, it may result in duplicate message IDs.

· Setting “replaceOnly” to true during the move operation replaces existing messages with messages moved during the operation. This option requires that there be a message with a matching message ID in the destination before the move, failing which will throw an “OperationNotSupported” exception.

The following table lists the message properties are affected by the import operation

	Property Name
	Preserved

	JMSMessageID
	N

	JMSTimestamp
	N

	JMSType
	Y

	JMSPriority
	Y

	JMSCorrelationID
	Y

	JMSReplyTo
	Gets dropped/nullified

	JMSDeliveryMode
	N

	
	

	
	N

	JMS_BEA_UnitOfOrder
	N

	JMS_BEA_Size
	Y

	JMS_BEA_SequenceNumber
	Y

	JMS_BEA_DeliveryTime
	N

	JMS_BEA_RedeliveryLimit
	N

	JMSXDeliveryCount
	N

Note that if you want to preserve more of the message properties, consider moving the messages to another destination instead of exporting and importing messages.
9.2.1 Importing Messages Using Console

Importing messages from an XML file onto a JMS destination follows similar steps as export. First step is to navigate to the JMS destination (or Durable subscriber) monitoring page onto which you want to import the messages as shown below.

[image: image27.jpg]>y lmsSystemResouss >MyQue:

mmary of IS Messages

Summary of JMS Messages

‘This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages to another destination, export message contents in XL format to another ile, import XML formatted message contents from another file, or drain allthe
messages from a destination

Click on 3 message to viewts contents.

Message Selector:

P Customize this table

JMS Messages(Filtered - More Columns Exist)

!

Showing 1100 0f0 Previous | Next

O [ma Corrld

Time Stamp

State String

“There are no items to display

Showing 1100 0f0 Previous | Next

Console Screenshot 22. Import Message Step 1
In this example, we are going to import messages onto “MyQueue2”, which current has no messages. By clicking on the “Import” button, the Console displays a File browsing dialog as shown below which allows the user to select the appropriate XML file that has originally exported messages.

[image: image28.jpg]Summary of JUS Messages |

>myJmsSystemResource >

| s

Import JVS Messages

Import JMS Messages

Select or enter the file that contains the messages to be imported. The file must exist and have a xmi extension.

patn: D.\jmsmessages xml

Recently Used Paths: (none)
Current Location: localhost\D:

O caiipse

O Ecipseworkspace
O oracte

O recyeLer

O temp

@ 1 jmsmessages.xm

Console Screenshot 23. Import Message Step 2
After selecting the XML file, you need to click “Ok” to being the import processing. After successful completion of the importing, the Console displays the confirmation page along with the messages in the table as shown below.

[image: image29.jpg]IS Wodules sy ImsSyaiemR

Messages

= Summary of WS Wesseges_|

Summary of JMS Messages

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages o another destination, export message contents in XHIL format to another file, import XML formatted message contents from another file, or drain allthe

messages from a destination

Click on a message to view ts contents.

Message Selector:

P Custornize this table

JWS MessagesFiltered - More Columns Exist)

N Y I I

Showing 1to 4 of 4 Previous | Next

O [moe Corrld Time Stamp. State String
[|i:<748070. 1236178 162156.0- four originallyproduced on HyQueue Wed Har 04 09:49.22 EST 2009 isible
[0 |i0:<746079.1236178 162188.0- v originally produced on yQueue Wed Mar 04 09:49.22 EST 2009 ordered
[|iD:<74s079. 1236178 162186.1> quitorginally produced on WyQueue Wed Har 04 09:49.22 EST 2009 ordered
[0 |io:<746079.1236178162203.0~ quitorginally produced on WyQueuet Wed Mar 04 09:49.22 EST 2009 visible

1 I

Showing 1104 of4 Previous | Next

Console Screenshot 24. Import Message Step 3
9.2.2 MBean APIs for Import Messages
Both JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean have the API for message import functionality. Note that the first argument of this API is an array of CompositeData representation of the actual messages that are being imported and the seconds argument is to indicate whether to replace the existing messages or not. See the WLST example shown below for more details on how to use this API.

	API Signature
	Description

	Void importMessages(CompositeData[] messages, Boolean replaceOnly) throws ManagementException;
	Imports an array of messages into the destination. If the message ID of the message being imported matches a message already on the destination, then the existing message will be replaced. If an existing message does not exist, then the message will be produced on the destination. A produced message is subject to quota limitations.
@param messages An array of messages in CompositeData representation to be imported.

@param replaceOnly When set to true an exception will be thrown if the message ID does not exist on the target destination.

@exception weblogic.management.ManagementException Thrown if an error occurs while processing the request. The selected messages will remain on the source destination.

For more information on the MBean APIs, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSMessageManagementRuntimeMBean.html
Also, there are APIs added to the WLS JMS extensions as listed below to support the message import/export operations.
On weblogic.jms.extensions.WLMessageFactory

	API Signature
	Description

	Message createMessage(Document jmsMessageDocument) throws DOMException, JMSException, IOException, ClassNotFoundException;
	Retunes a JMS Message

@param org.w3c.dom.Document Either WebLogic JMS Message Document or application document. If it is null then this is the same as calling the createMessage method without argument.

@exception weblogic.management.ManagementException Thrown if an error occurs while processing the request. The selected messages will remain on the source destination.

On weblogic.jms.extensions.WLMessage
	API Signature
	Description

	org.w3c.dom.Document getJMSMessageDocument();
	Returns an XML DOM Document representation of the message.

9.3 Importing Messages using WLST
This example demonstrates the “import” messages operation using WLST. Similar to message browsing, first get the messages that you want to import in composite date format and save them in a local variable. Then navigate to the destination runtime mbean where the messages need to imported and form the actual import operation.

9.3.1 Importing messages from MyQueue1 to MyQueue2

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

navigate to “MyQueue1” that we want to browse

cd (‘Destinations/MyJmsSystemResource!MyQueue1’)
create a cursor to get all the messages matching selector

cursor1=cmo.getMessages(‘JMSCorrelationID LIKE \’sent_to_MyQueue1\’’,9999999)
next find the cursor size (total number of messages in the cursor)

size=cmo.getCursorSize(cursor1)
get all ‘size’ number of messages from the cursor starting
from position 1

msgs=cmo.getItems(cursor1, 1, size)
#now navigate to the queue destination runtime to where the messages

will be imported

cd (‘../../..’)

cd (‘MyJMSServer2/Destinations/ MyJmsSystemResource!MyQueue2’)

now import all the messages that are already stored in “msgs” above

note that the second argument “replaceOnly” is only allowing “false”

at this moment and hence no is indicating “replaceOnly” is

cmo.importMessages(msgs,false)

WLST Snippet 14 – Importing messages from one queue to another queue
10 Durable Subscription Management

This feature provides facilities that particularly help manage the durable subscriptions on a Topic. In addition to the message browsing/manipulation capabilities discussed above, there are a few specific capabilities offered in this feature such as:

· the ability to view a list of durable subscribers for a given Topic

· browse messages associated with a subscriber

· purge all messages for a subscriber and delete selected messages for a subscriber

· create and delete durable subscribers on a Topic

Similar to other features discussed above, these capabilities are exposed both via programmatic APIs as well as the Administration Console.

The APIs are spread among JMSDurableSubscriberRuntimeMBean which extends JMSMessageManagmentRuntimeMBean and JMSDestinationRuntimeMBean.
10.1 Managing Durable Subscribers using Console
Durable subscribers’ management includes both the creation and deletion of durable subscribers on the topic as well as the message management of the subscriptions. The message management durable subscribers are similar to that of the queue destination. The following Console screenshots shows the typical page flow of the durable subscriber management.

Since the durable subscribers are associated with the Topic destinations, the first step in the management process is to navigate to the appropriate Topic’s monitoring page as shown below.

[image: image30.jpg]Use this page to monitor and manage durable subscribers that are funning on a JWS topic. From this page, you can view detailed runfime statistics for each durable subscriber, as well as create
new durable subscribers o delete existing ones.

Click on a subscriber to view its configuration details. To view a subscriber's messages, selectte check box nextto ts name, and then click the Show Messages button.

P Customize this table

Durable Subscribers(Filtered - More Columns Exist)

Showing 010 0070 Previous | Next

Client 1D Mo Local Messages. Active Selector

“There are no tems to display

Showing 010 0070 Previous | Next

Console Screenshot 25. Creating New Durable Subscriber – Step 1
The “Durable Subscribers” on this page lists a table of durable subscribers that are currently exist on this topic. The buttons above and below the table allow the users to take various actions on the durable subscribers listed.

To create a brand new durable subscriber administratively, you need to click on the “New” button which will display the page for entering the information about the subscriber as shown below.

[image: image31.jpg]Create a New JMS Durable Subscriber

\
Croato aiow S uralo Subscrier

“The following properties will be usedto create your new JUS durable subscriber.

Whatwould you like to name your new durable subscriber?

Subscription Name: MyDS1

Specify a unique client identifer for the durable subscriber.

Client ID:

MyClientiD1

Optionally, specify a message selector for the durable subscriber.

Hessage setecton (—

Do you want o prevent his durable subscriber flom receiving messages it has published?

No Local Messages

Console Screenshot 26. Creating New Durable Subscriber – Step 2
After validating the information entered, the next page would display the confirmation message indicating the successful creation of the durable subscriber based on the input and the table would list the information as shown below.
[image: image32.jpg]Fome 2115 Nogules ~rmyimssystemRasouos >MyTopiot

Messages

JuS Durable Subscriber successfully created.

Use this page to monitor and manage durable subscribers that are running on a JUS topic. From this page, you can view detailed runtime statistics for each durable subscriber, as well as create

new durable subscribers or delete existing ones.

Click on a subscriber to view its configuration details. To view a subscriber's messages, select the check boxnextto ts name, and then click the Show Messages button

P Customize this table

Durable SubscribersiFitered - More Columns Exist)

Showing 110 20f2 Previous | Next

CiientID Ho Local Messages Active Selector
MyClientiD1 e faise
yClientD2 felse. false.

‘Showing 102012 Previous | Next

Console Screenshot 27. Creating New Durable Subscriber – Step 3
At this time, both the “Delete” and “Show Messages” buttons are enabled. By selecting any of the durable subscribers from the table and clicking on the “Show Messages” would display the messages associated with that durable subscriber as shown below.

[image: image33.jpg]Home >JMS Mod:

myJmsSysiemRsouros >y Topict >Summary of JMS Messages

‘Summary of JMS Messages

This page summarizes the available messages for a stand-alone queue, a distributed queue, or a topic durable subscriber. Use this page to view message details, create new messages, delete
selected messages, move messages o another destination, export message contents in XL format to another file, import XML formatted message contents from another file, or drain allthe

messages from a destination

Click on a message to viewts contents.

Message Selector:

P Customize this table

JMS MessagesFiltered - More Columns Exist)

\

Showing 1105 0f5 Previous | Next

O [me Corrid Time Stamp State String
[|i:<184157.1235048788906.0- sentto_HyTopic1_WDS1 Sun Mar 0118:06:28 EST 2009 visible
[|i0:<184157.1235048788984.0> sentto_liyTopic1_WDS1 Sun Mar 01 18:06:28 EST 2009 ordered
[|i<184157.1235048788984.1> sentto_liyTopic1_WDS1 Sun Mar 0118:06:28 EST 2009 ordered
[| iD:<184157.1235048789000.0> sentto_liyTopic1_WDS1 Sun Mar 0118:06:29 EST 2009 ordered
[|iD:<184157.1235048789000.1> sent_to_WyTopict_WyDS1 Sun Mar 01 18:06:29 EST 2009 ordered

Showing 1105 0f5 Previous | Next

Console Screenshot 28. Browsing Messages on a Durable Subscriber
While you are at this page, you can perform further message management operations such move, delete, import and export of this durable subscriber’s messages as described in sections 8 and 9 above.

Similar to creating the durable subscribers administratively, the same can be deleted from the Console, by selecting the Durable Subscribers from the table as shown below.

[image: image34.jpg]Fome 2115 Nogules ~rmyimssystemRasouos >MyTopiot

Messages

JuS Durable Subscriber successfully created.

Use this page to monitor and manage durable subscribers that are running on a JUS topic. From this page, you can view detailed runtime statistics for each durable subscriber, as well as create

new durable subscribers or delete existing ones.

Click on a subscriber to view its configuration details. To view a subscriber's messages, select the check boxnextto ts name, and then click the Show Messages button

P Customize this table

Durable SubscribersiFitered - More Columns Exist)

Showing 110 20f2 Previous | Next

CiientID Ho Local Messages Active Selector
MyClientiD1 e faise
yClientD2 felse. false.

‘Showing 102012 Previous | Next

Console Screenshot 29. Deleting Durable Subscribers – Step 1
After selecting any of the durable subscribers from the table, you need to click the “Delete” button that will display the confirmation page as shown below.

[image: image35.jpg]Delete JMS Durable Subscriber

Delete JWIS Durable Subscribers

You have selected the following items to be deleted. Click Yes to delete.
& Subscription Name: HyDS1, Client ID: MyClientD1

Console Screenshot 30. Deleting Durable Subscribers – Step 2
After successful deletion of the durable subscriber, the following page displays the remaining list of the durable subscribers as shown below.

[image: image36.jpg]Messages

|

Use this page to monitor and manage durable subscribers that are running on a JS topic. From this page, you can view detailed runtime statistcs for each durable subscriber, as well as create
new durable subscribers or delete existing ones,

Click on 3 subscriber to view its configuration details. To view a subscriber's messages, selectthe check boxnextto its name, and then cick the Show Messages button

P Customize this table

 Durable Subscribersifiltered - More Columns Exist)

Showing 1t 10f 1 Previous | Next

[| subscription Name & Client ID

NoLocal Messages

Selector

yClientD2

false

false

Showing 1t 10f 1 Previous | Next

Console Screenshot 31. Deleting Durable Subscribers – Step 3
10.2 MBean APIs for Managing Durable Subscribers
WebLogic JMS runtime management offers a comprehensive set of administrative APIs for durable subscriber management.

Both JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean offer APIs for subscription and message management on Topics as shown below.

	API Signature
	Description

	JMSDurableSubscriberRuntimeMBean[] getDurableSubscribers();
JMSDurableSubscriberRuntimeMBean[] getJMSDurableSubscriberRuntimes();

	An array of durable subscriber run-time MBeans for this destination.
@return The durableSubscriberRuntimeMBeans value

	Void createDurableSubscriber(String ClientID, String subscriptionName, String selector, boolean noLocal) throws InvalidSelectorException, JMSException;
	Creates a durable subscriber on the destination with the specified client ID and subscription name. A message selector and no-local flag may also be specified.

@param ClientID An identifier that uniquely identifies a client connection.

@param subscriptionName The name used to identify this subscription.
@param selector Only messages with properties matching the message selector expression are delivered. A value of null or an empty string indicates that there is no message selector for the message consumer.

@param noLocal If set, inhibits the delivery of messages published by its own connection.
@exception InvalidSelectorException The specified JMS selector is invalid.

@exception JMSException An error occurred while processing the request.

	Void destroyDurableSubscriberRuntime(JMSDurableSubscriberRuntimeMBean b) throws InvalidSelectorException, JMSException;
	Destroy a durable subscriber

	API Signature
	Description

	void Destroy()
	Completely removes this durable subscriber (and all messages associated with this durable subscription). After calling this method the durable subscription represented by this MBean will no longer be valid.

For more information on the MBean APIs, please see

For more information on the MBean APIs, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSDestinationRuntimeMBean.html and

For more information on the MBean APIs, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSDurableSubscriberRuntimeMBean.html
10.3 Durable Subscriber Management Using WLST

10.3.1 Creating and navigating durable subscribers

The snippet below is used to create a durable subscription named “mydsub1” on the topic “MyTopic1” using the client id “myclientid1” and how to navigate to one further management

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

navigate to “MyTopic1” where the durable subscriber will be created
cd (‘Destinations/MyJmsSystemResource!MyTopic1’)
now create a durable subscription using a unique client id,

and subscription name

third argument is the selector expression, ‘true’ indicates no

filtering and the fourth argument ‘true’ inhibits the messages

produced by local connection using the same client id

cmo.createDurableSubscriber('myclientid1','mydsub1','true',true)
once it is created we need to navigate to the

DurableSubscribers Runtime tree as below

cd(‘DurableSubscribers’)

The next command will show the subscription created in the

previous step and the output shall look like

dr-- myclientid1_mydsub1
ls()

For managing the messages on this subscription

navigate to its runtime as below

cd('myclientid1_mydsub1')

WLST Snippet 15 – Creating and navigating the durable subscriber administratively

10.3.2 Getting the durable subscriber Runtime MBeans

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

navigate to “MyTopic1” where the durable subscriber will be created
cd (‘Destinations/MyJmsSystemResource!MyTopic1’)
Method 1.

get all the durable subscriber runtime MBeans on this topic

note that this operation would return an array of dsub runtimes

dsubs1=cmo.getDurableSubscribers()

To print the first durable subscriber in the array

print dsubs1[0]

Method 2.

get all the durable subscriber runtime MBeans on this topic

note that this operation would return an array of dsub runtimes

dsubs2=cmo.getJMSDurableSubscriberRuntimes()

To print the second durable subscriber in the array

print dsubs2[1]

To print all the durable subscriber runtime MBeans in the array

print dsubs2

if there are no durable subscribers exist then the returned

array will be empty and the “print dsubs2” shall print out as:

#array(weblogic.management.runtime.JMSDurableSubscriberRuntimeMBean,[])

WLST Snippet 16 – Getting the durable subscriber Runtime MBeans

10.3.3 Deleting the durable subscriber

To delete the durable subscriber using WLST, you have to first navigate and get hold of the durable subscriber runtime mbean and pass it as an argument to the delete operation as shown below.

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

navigate to “MyTopic1” where the durable subscriber will be created
cd (‘Destinations/MyJmsSystemResource!MyTopic1’)
get all the durable subscriber runtime MBeans on this topic

note that this operation would return an array of dsub runtimes

dsubs1=cmo.getDurableSubscribers()

Get the subscriber runtime mbean into a local variable

then pass it as an argument to the delete method as below

dsrt1=dsubs1[0]

cmo.destroyJMSDurableSubscriberRuntime(dsrt1)

Or you can directly pass in the indexed array element as below

cmo.destroyJMSDurableSubscriberRuntime(dsubs1[1])
WLST Snippet 17 – Deleting the durable subscriber Runtime MBean

10.3.4 Message Management of the durable subscription

The message management operations on the durable subscriber are same as on the Queue except that you have to navigate to the durable subscriber runtime mbean before invoking any message management operation.

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

navigate to “MyTopic1” where the durable subscriber will be created
cd (‘Destinations/MyJmsSystemResource!MyTopic1’)
Need to navigate to the durable subscriber runtime before

performing any message management operation

cd (‘DurableSubscribers/myclientid1_mydsub1')
Now create a message cursor to get the messages

cursor1 = cmo.getMessages('true',999999)

get the first message from the cursor1

msg1 = cmo.getNext(cursor1,1)

print msg1
WLST Snippet 18 – Message management on durable subscription
11 Transaction Management
The transaction management allows the users to monitor and manage outcome of the transactions administratively. The transaction management features spread around both JMS and JTA subsystems of WebLogic Server. Using these features, you can easily track and manage all messages associated with the in-flight (pending) transactions and force the transaction to either commit or rollback.

The transaction management done at JMS subsystem level only affects the JMS branch of the transaction and do not impact the entire transaction. Although there may be occasions where you may need to force a commit or roll back of only the JMS branch of the transaction, it is recommended that you commit or roll back the entire global transaction using the management features offered at JTA subsystem level to avoid inconsistent transaction outcome.
To perform the global transaction management, you need to use the JTA runtime management feature as described in the following sections.

11.1 Transaction Management Using Console

As explained earlier, the transaction management is available at both JMS subsystem level as well as at the JTA subsystem level.
To manage the transaction at the JMS subsystem level, you need to navigate to the JMSServer monitoring page as shown below. The table lists all the in-flight transactions’ information including it’s the transaction coordinator information, current status and how long the transaction is in that state.

[image: image37.jpg][»m >Summan S Senver yiSSenart oo |

“This page allows you to view acive transactions running on this JUS server.

P Customize this table

Transactions

Showing 1t0 20f2 Previous | Next

O [xde Coordinator Servers. Resour

O |CEALIOOROFECRBDIEIE. enioss48555C85557 45126531 | SOTIISSSRNGIH 192 168102700t _seers| eampessener st
SEN|000SEF4SCFERD OB - = = A

0 o nsesase orsanosassescossartrrassa | SSmesSenae 1o 601 oz 70t saner | e]

nmit

Showing 1to 20f2 Previous | Next

Console Screenshot 32. Local Transaction Management on JMSServer Runtime MBean – Step 1
From this page, you can either force the rollback or commit of the local transaction branch associated with this JMSServer by selecting the appropriate Xid from the table. After successful operation, the next page would display the confirmation log message and the table would list the remaining in-flight transactions as shown below.

[image: image38.jpg]Fome >Summary of S Serves SHyNisserver Montoring |

Messages

EdSelected transactions have been forcibly rolled mx]

“This page allows you to view acive transactions running on this JWS server.

P Customize this table

Transactions

Force Commit Showing 1101011 Previous | Next
Seconds

M |Xda Coordinator status | 3¢ servers. Resource

5], | EEAT D009BFASCRERRDTORSR: examplesSenver+192.168.1.1027001+wl_senerst3+ | Actve 892 | examplesServer | WLStore_

§74C83746F72686F T76C5F 73657276657 25F AD794A4D5346696CE553746F 726531

Showing 1t 10f 1 Previous | Next

<

]

Console Screenshot 33. Local Transaction Management on JMSServer Runtime MBean – Step 2
As mentioned at the beginning of this section, it is always recommend performing the global transaction management as opposed to the local transaction management to avoid in-consistent transaction outcome. The global transaction management can be performed by navigating to the Server monitoring page as shown below. The transaction statistics table includes information such as Xid, state and the XA resources that are involved in that transaction. Note that this page has options for both “local” as well as “global” transaction management.

[image: image39.jpg]~Somm ~eramples server

Settings for examplesServer

onfiguration | Protocols | Logging | Debug ontrol | Deployments | Services | Security | Notes

General | Health | Channels | Performance | Threads | Timers | Workload | Security | Defauit Store | JMS

This page shows information about current transactions coordinated by the server or in which server resources participate.

P Customize this table

‘Transaction statisticsifiltered - More Columns Exist)

Showing Tto 2012 Previous | Next
[| Transactionip & Status m"s XA Resources Servers.
o sﬁ;gwmmamww Active | 364 QWL Store_wi_server_MyJNSFileStore1=suspended} {wi_server+examplesSener=active}

Local Rollb: Showing 1102012 Previous | Next

bal Commit

Console Screenshot 34. Global Transaction Management using JTA Runtime
11.2 MBean APIs

The following APIs are available on JMSServerRuntimeMBean.
	API Signature
	Description

	String[] getTransactions()
	Returns an array of Xids representing transaction branches that exists on this JMS server in any state.

@return An array of Xids in string representation.

	String[] getPendingTransactions()
	Returns an array of Xids representing transaction branches that exists on this JMS server in the pending state, i.e. branches that have been prepared by the transaction manager but not yet committed or rolled back.

@return An array of Xids in string representation.

	Integer getTransactionStatus(String)
	Given a Xid this method returns the JTA status of the associated JMS transaction branch.

@param xid An Xid in string representation for a JMS transaction branch.

@return An integer value representing a JTA transaction state.

@see javax.transaction.xa.Xid

From javax.transaction.Status:

STATUS_ACTIVE = 0;

STATUS_MARKED_ROLLBACK = 1;

STATUS_PREPARED = 2;

STATUS_COMMITTED = 3;

STATUS_ROLLEDBACK = 4;

STATUS_UNKNOWN = 5;

STATUS_NO_TRANSACTION = 6;

STATUS_PREPARING = 7;

STATUS_COMMITTING = 8;

STATUS_ROLLING_BACK = 9;

	CompositeData[] getMessages(String Xid, Integer timeoutSeconds)
	Returns a set of messages that are associated with a JMS transaction branch. Note that the result set is returned to the caller in the form of a message cursor that may contain messages from several destinations on this JMS server.

The timeout parameter specifies the amount of time in seconds for which the cursor is valid. Upon timeout expiration the cursor is invalidated and the associated resources released.

@param xid An Xid in string representation for a JMS transaction branch.

@param timeoutSeconds The last access timeout for the cursor. The cursor

resources will be reclaimed if it is not accessed within the specified time interval. A value of 0 indicates no timeout.
@return A message cursor containing messages associated with the transaction branch, possibly from multiple destinations.

@exception JMSException thrown when an error occurs while processing the request.

@see javax.transaction.xa.Xid

@see JMSMessageCursorRuntimeMBean

	forceCommit(String Xid)
	Causes the work associated with the specified transaction branch to be committed.

@param xid An xid in string representation for a JMS transaction branch.

@exception JMSException thrown when an error occurs while processing the request.

	forceRollback(String Xid)
	Causes the work associated with the specified transaction branch to be rolled back.

@param xid An xid in string representation for a JMS transaction branch.

@exception JMSException thrown when an error occurs while processing the request.

The following table lists a set of related JTARutimeMBean APIs that can be used for global transaction management.

	API Signature
	Description

	JTATransaction[] getTransactionsOlderThan(Integer seconds);
	An array of <code>JTATransaction</code> objects. Each object provides detailed information regarding an active transaction that has existed for a period longer than the time specified.
@param seconds The transaction duration in seconds qualifier.

@return The transactionsOlderThan value

	JTATransaction[] getJTATransactions();
	An array of <code>JTATransaction</code> objects. Each object provides detailed information regarding an active transaction.
@return The jTATransactions value

	JTATransaction getJTATransaction(String xid) throws RemoteException;
	Returns the JTATransaction information object for the specified Xid. If the transaction represented by xid does not exist on the server, then the method will return null.
@param xid

@return The jTATransaction value

@exception RemoteException

	void forceGlobalRollback(Xid xid) throws RemoteException;
	Forces the transaction represented by xid to be rolled-back at all participating SubCoordinators. If the server on which the method is invoked is not the coordinating server then the coordinating server will be notified to process the rollback.
@param xid

@exception RemoteException

	Void forceGlobalCommit(javax.transaction.xa.Xid xid) throws RemoteException;
	Forces the transaction represented by xid to be committed at all participating SubCoordinators. If the server on which the method is invoked is not the coordinating server then the coordinating server will be notified to process the commit.
@param xid

@exception RemoteException

For more details on the JMSServerRuntimeMBean, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JMSServerRuntimeMBean.html
For more details on the JTARuntimeMBean, please see http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/JTARuntimeMBean.html
11.3 Transaction Management Using WLST

The examples below are assuming that there are messages in the JMS system that are consumed in a “User Transaction” but not committed.

11.3.1 Getting all the active Transaction IDs

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

Get all the current transactions associated with ‘MyJMSServer1’

txns=cmo.getTransactions()
printing the Tx ids obtained in the above step, would result in the following

#array(['BEA1-0000F45A51A2BD76B51F-#574C53746F72655F776C5F7365727665725F6578616D706C654A44424353746F7265', #'BEA1-00005DF81E4ABD76B51F-
#574C53746F72655F776C5F7365727665725F6578616D706C654A44424353746F7265']#, #java.lang.String)

print txns
WLST Snippet 19 – Message management on durable subscription
11.3.2 Getting the Transaction status of a given Tx ID

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

Get all the current transactions associated with ‘MyJMSServer1’

txns=cmo.getTransactions()
printing the Tx ids obtained in the above step,

would result in the following

#array(['BEA1-0000F45A51A2BD76B51F-#574C53746F72655F776C5F7365727665725F6578616D706C654A44424353746F7265', #'BEA1-00005DF81E4ABD76B51F-
#574C53746F72655F776C5F7365727665725F6578616D706C654A44424353746F7265']#, #java.lang.String)

print txns

getting the status of the given Transaction ID

txsts = cmo.getTransactionStatus(‘BEA1-0000F45A51A2BD76B51F-574C53746F72655F776C5F7365727665725F6578616D706C654A44424353746F7265’)

print the transaction status

the output displayed for the command is “0”, which is state ACTIVE

see transactions API table in section 3 above

print txsts
WLST Snippet 20 – Printing the transaction status

11.3.3 Getting the messages associated with Pending Transaction

There maybe situations where a global transaction (2PC) involving more than one resource might be stuck after the first phase (after preparing the resources) of the “commit” call, but before the second phase of committing the transaction. In this scenario, the transaction is marked as “pending” and all the messages associated with the transactions are to be considered as “pending”. Again, in this case, the users might able to administratively identify those pending transactions and force the outcome of the same as shown below. [Snippet needs to be verified]

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

Get all the pending transactions associated with ‘MyJMSServer1’

ptxns=cmo.getPendingTransactions()
Now create a message cursor to hold all the messages that are part

of the pending transaction id

ptxcursor=cmo.getMessages(ptxns[0],999999)

get the cursor size

ptxcursorsize=cmo.getCursorSize(ptxcursor)

get all the messages into an array of MessageInfo composite array

ptxmsgs=cmo.getItems(ptxcursor,0,ptxcursorsize)

printing the message content

print ptxmsgs

force the rollback of the Global transaction

by navigating to the JTA runtime tree as shown below

cd ('../../../..')

cd ('JTARuntime/JTARuntime')

get the Global transaction based on the pending tx id

jtatxn=cmo.getJTATransaction(ptxns[0])
jtaxid=jtatxn.getXid()
now call the forceGlobalRollback so the messages will be

redelivered on both the JMS servers
cmo.forceGlobalRollback(jtaxid)
WLST Snippet 21 – Getting the message info associated with a pending transaction

11.3.4 Managing the messages associated with any given Transaction

To get the messages associated with a given transaction, one needs to first get the transaction id as shown above and use it for creating the message cursor as shown below.

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

Get all the current transactions associated with ‘MyJMSServer1’

txns=cmo.getTransactions()
Now create a message cursor to hold all the messages that are part

of the transaction id (or one can pass in the indexed array element

like txns[0] instead of the actual tx id for the first parameter

below) and the cursor timeout value

txcursor=cmo.getMessages(‘BEA1-0000F45A51A2BD76B51F-574C53746F72655F776C5F7365727665725F6578616D706C654A44424353746F7265’,999999)

get the cursor size

txcursorsize=cmo.getCursorSize(txcursor)

get all the messages into an array of MessageInfo composite array

txmsgs=cmo.getItems(txcursor,0,txcursorsize)

printing the message content

print txmsgs

WLST Snippet 22 – Getting the message info associated with a given transaction

11.3.5 Forcing the transaction outcome to impact the message state

The script below demonstrates how users can administratively “force” the outcome of the transaction associated with a JMSServer to either “commit” or “rollback” to cause the message delivery to succeed or to fail.

connect to the server

connect(‘weblogic’,’weblogic’,’t3://localhost:7001’)

navigate to the root of the server’s Runtime MBean tree

serverRuntime()

navigate to the JMSRuntime

cd(‘JMSRuntime/myserver.jms’)

navigate to the JMSServer that the queue is on

cd(‘JMSServers/MyJMSServer1’)

Get all the current transactions associated with ‘MyJMSServer1’

txns=cmo.getTransactions()
Now force the transaction txns[0] to commit

cmo.forceCommit(txns[0])

To force the rollback of the transactions txsn[1]

cmo.forceRollback(txns[1])

WLST Snippet 23 – Force the transaction to commit/rollback

12 Conclusion

This paper captures all the related pieces of information regarding WebLogic JMS runtime message management in a single document. This paper can be used as a quick reference to understand various aspects of JMS message management and JMS runtime MBean infrastructure. Finally, this paper demonstrates how WLST can be used as a command line administration tool to manage JMS messages at runtime.
13 Errata

13.1 OOM (Out Of Memory) caveat

As the message management operations involve creating the cursor snapshots that hold the messages for further operations it is recommended to avoid performing these operations in large batches which can easily lead to Out Of Memory (OOM) conditions. Instead break them into smaller batches so less server resources will be used.

13.2 UOO (Unit Of Order) caveat

Performing “move” operation of the UOO messages can cause problems regardless of whether any UOO messages remain in the original destination or not. After the move is performed, any new UOO messages produced for the same UOO, could still load-balance to the original destination - which effectively splits the UOO and its ordering. For path service based routing of UOO, the path service does not know about the move, or at most may figure out that the old destination doesn't own the UOO (but not where the UOO was moved). Hash based routing will always send new messages for the UOO to the same place. Both of these cases may potentially lead to corrupted UOOs.
13.3 Pause/Resume caveat

As already mentioned in the earlier sections, the message management involves creating cursors that are snapshot of a destination that is being browsed at the time of invocation. As this can be sometimes long lived, it can easily become “stale” if messages are produced and consumed on a live destination after the cursor is created. So, it is recommended to perform the “pause” and “resume” of the destination for message production and consumption appropriately, before performing any message management operations.

14 Appendix A - References

Domain

RuntimeMBean

Server

RuntimeMBean

JMS

RuntimeMBean

JMSServer

RuntimeMBean

JMSConnection

RuntimeMBean

JMSDestination

RuntimeMBean

JMSDurableSubscriber

RuntimeMBean

JMSConsumer

RuntimeMBean

JMSProducer

RuntimeMBean

1:M

1:1

1:M

1:M

1:M

1:M

JMSSession

RuntimeMBean

1:M

1:M

JMSPooledConnection

RuntimeMBean

1:M

1:M

SAFAgent

RuntimeMBean

1:M

SAF

RuntimeMBean

1:1

1:M

SAFRemoteEndpoint

RuntimeMBean

Cursor

RuntimeMBean

MessageCursor

RuntimeMBean

JMSMessageCursor

RuntimeMBean

JMSMessageManagement

RuntimeMBean

1:M

1:M

1:M

JMSDurableSubscriber

RuntimeMBean

JMSDestination

RuntimeMBean

JMSServer

RuntimeMBean

JMS

RuntimeMBean

� � HYPERLINK "http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/" ��http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/�

� � HYPERLINK "http://e-docs.bea.com/wls/docs103/wlsmbeanref/core/index.html" ��http://e-docs.bea.com/wls/docs103/wlsmbeanref/core/index.html�

� � HYPERLINK "http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/package-summary.html" ��http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/package-summary.html�

� � HYPERLINK "http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/package-summary.html" ��http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/package-summary.html�

� � HYPERLINK "http://e-docs.bea.com/wls/docs103/config_scripting/using_WLST.html" ��http://e-docs.bea.com/wls/docs103/config_scripting/using_WLST.html�

� � HYPERLINK "http://www.jython.org" �http://www.jython.org�.

� � HYPERLINK "http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jms/uoo.html" ��http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jms/uoo.html�

__

 WebLogic JMS Runtime Message Management in a Nutshell Page 3 of 85

